Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajesh S. Alphonse is active.

Publication


Featured researches published by Rajesh S. Alphonse.


Stem Cells and Development | 2012

Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats.

Paul Waszak; Rajesh S. Alphonse; Arul Vadivel; Lavinia Ionescu; Farah Eaton; Bernard Thébaud

Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity. Bone marrow derived-mesenchymal stem cells (BM-MSC) prevent lung injury in an O(2)-induced model of BPD. The low level of lung BM-MSC engraftment suggests alternate mechanisms-beyond cell replacement-to account for their therapeutic benefit. We hypothesized that BM-MSC prevent O(2)-induced BPD through a paracrine-mediated mechanism and that preconditioning of BM-MSC would further enhance this paracrine effect. To this end, conditioned medium (CM) from BM-MSC (MSCcm) or preconditioned CM harvested after 24 h of BM-MSC exposure to 95% O(2) (MSC-O2cm) were administrated for 21 days to newborn rats exposed to 95% O(2) from birth until postnatal day (P)14. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and exhibited signs of pulmonary hypertension (PH), assessed by echo-Doppler, right ventricular hypertrophy, and pulmonary artery medial wall thickness. Daily intraperitoneal administration of both CM preserved alveolar growth. MSC-O2cm exerted the most potent therapeutic benefit and also prevented PH. CM of lung fibroblasts (control cells) had no effect. MSCcm had higher antioxidant capacity than control fibroblast CM. Preconditioning did not increase the antioxidant capacity in MSC-O2cm but produced higher levels of the naturally occurring antioxidant stanniocalcin-1 in MSC-O2cm. Ex vivo preconditioning enhances the paracrine effect of BM-MSC and opens new therapeutic options for cell-based therapies. Ex vivo preconditioning may also facilitate the discovery of MSC-derived repair molecules.


Circulation | 2014

Existence, Functional Impairment, and Lung Repair Potential of Endothelial Colony-Forming Cells in Oxygen-Induced Arrested Alveolar Growth

Rajesh S. Alphonse; Arul Vadivel; Moses Fung; William C. Shelley; Paul J. Critser; Lavinia Ionescu; Megan O’Reilly; Robin K. Ohls; Suzanne McConaghy; Farah Eaton; Shumei Zhong; Merv Yoder; Bernard Thébaud

Background— Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Methods and Results— Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth–arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood–derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Conclusions— Impaired ECFC function may contribute to arrested alveolar growth. Cord blood–derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage.


American Journal of Respiratory Cell and Molecular Biology | 2012

Airway Delivery of Soluble Factors from Plastic-Adherent Bone Marrow Cells Prevents Murine Asthma

Lavinia Ionescu; Rajesh S. Alphonse; Narcy Arizmendi; Beverly C. Morgan; Melanie Abel; Farah Eaton; Marek Duszyk; Harissios Vliagoftis; Tamar Aprahamian; Kenneth Walsh; Bernard Thébaud

Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.


American Journal of Respiratory Cell and Molecular Biology | 2011

Activation of Akt Protects Alveoli from Neonatal Oxygen-Induced Lung Injury

Rajesh S. Alphonse; Arul Vadivel; Lavinia Coltan; Farah Eaton; Amy J. Barr; Jason R. B. Dyck; Bernard Thébaud

Bronchopulmonary dysplasia (BPD) is the main complication of extreme prematurity, resulting in part from mechanical ventilation and oxygen therapy. Currently, no specific treatment exists for BPD. BPD is characterized by an arrest in alveolar development and increased apoptosis of alveolar epithelial cells (AECs). Type 2 AECs are putative distal lung progenitor cells, capable of regenerating alveolar homeostasis after injury. We hypothesized that the protection of AEC2 death via the activation of the prosurvival Akt pathway prevents arrested alveolar development in experimental BPD. We show that the pharmacologic inhibition of the prosurvival factor Akt pathway with wortmannin during the critical period of alveolar development impairs alveolar development in newborn rats, resulting in larger and fewer alveoli, reminiscent of BPD. Conversely, in an experimental model of BPD induced by oxygen exposure of newborn rats, alveolar simplification is associated with a decreased activation of lung Akt. In vitro studies with rat lung epithelial (RLE) cells cultured in hyperoxia (95% O(2)) showed decreased apoptosis and improved cell survival after the forced expression of active Akt by adenovirus-mediated gene transfer. In vivo, adenovirus-mediated Akt gene transfer preserves alveolar architecture in the newborn rat model of hyperoxia-induced BPD. We conclude that inhibition of the prosurvival factor Akt disrupts normal lung development, whereas the expression of active Akt in experimental BPD preserves alveolar development. We speculate that the modulation of apoptosis may have therapeutic potential in lung diseases characterized by alveolar damage.


PLOS ONE | 2014

Exogenous Hydrogen Sulfide (H2S) Protects Alveolar Growth in Experimental O2-Induced Neonatal Lung Injury

Arul Vadivel; Rajesh S. Alphonse; Lavinia Ionescu; Desiree S. Machado; Megan O’Reilly; Farah Eaton; Al Haromy; Evangelos D. Michelakis; Bernard Thébaud

Background Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT). Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S), carbon monoxide and nitric oxide (NO), belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. Methods We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) to study its lung protective potential in vitro and in vivo. Results In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. Conclusions H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT.


American Journal of Respiratory Cell and Molecular Biology | 2013

Hypoxia-Inducible Factors Promote Alveolar Development and Regeneration

Arul Vadivel; Rajesh S. Alphonse; Nicholas Etches; Timothy van Haaften; Jennifer J. P. Collins; Megan O’Reilly; Farah Eaton; Bernard Thébaud

Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.


American Journal of Respiratory and Critical Care Medicine | 2012

Critical Role of the Axonal Guidance Cue EphrinB2 in Lung Growth, Angiogenesis, and Repair

Arul Vadivel; Tim van Haaften; Rajesh S. Alphonse; Gloria-Juliana Rey-Parra; Lavinia Ionescu; Al Haromy; Farah Eaton; Evangelos D. Michelakis; Bernard Thébaud

RATIONALE Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. OBJECTIVES We hypothesized that EphrinB2 promotes alveolar development and repair. METHODS We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. MEASUREMENTS AND MAIN RESULTS In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. CONCLUSION The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.


PLOS ONE | 2013

The Axonal Guidance Cue Semaphorin 3C Contributes to Alveolar Growth and Repair

Arul Vadivel; Rajesh S. Alphonse; Jennifer J. P. Collins; Tim van Haaften; Megan O’Reilly; Farah Eaton; Bernard Thébaud

Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.


Neonatology | 2011

Growth Factors, Stem Cells and Bronchopulmonary Dysplasia

Rajesh S. Alphonse; Bernard Thébaud

Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity mainly affecting preterm infants that are born at 24–28 weeks of gestation. Surfactant therapy, antenatal steroids and incremental improvements in perinatal care have modified the pattern of injury and allowed survival of ever more immature infants, but there is still no specific treatment for BPD. As a consequence, this disorder remains the most common complication of extreme prematurity. Arrested alveolar growth and disrupted vasculogenesis, the histological hallmarks of BPD, may persist beyond childhood and lead to chronic lung diseases in adults. Recent advances in our understanding of stem cells and their potential to repair damaged organs offer the possibility for cell-based treatment for intractable diseases. This review summarizes basic concepts of stem cell biology and discusses the recent advances and challenges of stem cell-based therapies for lung diseases, with a particular focus on BPD.


Antioxidants & Redox Signaling | 2012

Lung injury in preterm neonates: the role and therapeutic potential of stem cells.

Rajesh S. Alphonse; Saima Rajabali; Bernard Thébaud

Continuous improvements in perinatal care have allowed the survival of ever more premature infants, making the task of protecting the extremely immature lung from injury increasingly challenging. Premature infants at risk of developing chronic lung disease or bronchopulmonary dysplasia (BPD) are now born at the late canalicular stage of lung development, just when the airways become juxtaposed to the lung vasculature and when gas-exchange becomes possible. Readily available strategies, including improved antenatal management (education, regionalization, steroids, and antibiotics), together with exogenous surfactant and exclusive/early noninvasive ventilatory support, will likely decrease the incidence/severity of BPD over the next few years. Nonetheless, because of the extreme immaturity of the developing lung, the extent to which disruption of lung growth after prematurity and neonatal management lead to an earlier or more aggravated decline in respiratory function in later life is a matter of concern. Consequently, much more needs to be learned about the mechanisms of lung development, injury, and repair. Recent insight into stem cell biology has sparked interest for stem cells to repair damaged organs. This review summarizes the exciting potential of stem cell-based therapies for lung diseases in general and BPD in particular.

Collaboration


Dive into the Rajesh S. Alphonse's collaboration.

Top Co-Authors

Avatar

Bernard Thébaud

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Arul Vadivel

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shumei Zhong

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin K. Ohls

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge