Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arumugam Madhumalar is active.

Publication


Featured researches published by Arumugam Madhumalar.


Cell Cycle | 2010

Differential binding of p53 and nutlin to MDM2 and MDMX: computational studies.

Thomas L. Joseph; Arumugam Madhumalar; Christopher J. Brown; David P. Lane; Chandra Verma

Half of human tumours have mutated p53 while in the other half, defective signalling pathways block its function. One such defect is the overexpression of the MDM2 and MDMX proteins. This has led to an intense effort to develop inhibitors of p53-MDM2/MDMX interactions. Nutlin is the first such compound described to block p53-MDM2 interactions. Molecular dynamics simulations have been used to explore the differences in binding of p53 and nutlin to MDM2/MDMX. Simulations reveal that p53 has a higher affinity for MDM2 than MDMX, driven by stronger electrostatic interactions. p53 is displaced from MDM2 by nutlin because it is more flexible, thus paying a larger entropic penalty upon sequestration by MDM2. The inherent plasticity of MDM2 is higher than that of MDMX, enabling it to bind both p53 and nutlin. The less flexible MDMX interacts with the more mobile p53 because the peptide can adapt conformationally to dock into MDMX, albeit with a reduced affinity; nutlin, however is rigid and hence can only interact with MDMX with low affinity. Evolutionarily, the higher affinity of MDM2 for p53 may enable MDM2 to bind p53 for longer periods as it shuttles it out of the nucleus; in contrast, MDMX only needs to mask the p53 TA domain. This study enables us to hypothesize gain of function mutations or those that have decreased affinity for nutlin. These conclusions provide insight into future drug design for dual inhibitors of MDM2 and MDMX, both of which are oncoproteins found overexpressed in many cancers.


Cell Cycle | 2010

Mdm2 and p53 are highly conserved from placozoans to man.

David P. Lane; Chit Fang Cheok; Christopher J. Brown; Arumugam Madhumalar; Farid J. Ghadessy; Chandra Verma

The p53 protein is the most commonly mutated tumor suppressor gene in man. Understanding of its evolutionary origins have been enhanced by the recent discovery of p53 family genes in the sea anemone Nematostella vectensis. This amino acid sequence conservation has been reflected in biological activity since the early p53 proteins, like their human counterparts, are responsible for DNA damage-induced cellular apoptosis, albeit restricted to the germ cell compartment in model organisms such as the nematode and fruit fly. In vertebrates from zebrafish to man the function of p53 is tightly and absolutely constrained by a negative regulator Mdm2. However the Mdm2 gene has not been detected in the genome of the model nematode (C. elegans) and insect (D. melanogaster) species. We have found that the p53 gene and the Mdm2 gene are present in Placozoans, one of the simplest of all free living multi-cellular organisms, implying that both proteins arose much earlier in evolution than previously thought. Detailed sequence analysis shows the exceptional retention of key features of both proteins from man to placazoan implying that the p53-Mdm2 interaction and its regulation have been conserved from a basal eumetazoan since the pre-cambrian era over one billion years ago.


BMC Genomics | 2010

Differences in the transactivation domains of p53 family members: a computational study

Jagadeesh N Mavinahalli; Arumugam Madhumalar; Roger W. Beuerman; David P. Lane; Chandra Verma

The N terminal transactivation domain of p53 is regulated by ligases and coactivator proteins. The functional conformation of this region appears to be an alpha helix which is necessary for its appropriate interactions with several proteins including MDM2 and p300. Folding simulation studies have been carried out to examine the propensity and stability of this region and are used to understand the differences between the family members with the ease of helix formation following the order p53 > p73 > p63. It is clear that hydrophobic clusters control the kinetics of helix formation, while electrostatic interactions control the thermodynamic stability of the helix. Differences in these interactions between the family members may partially account for the differential binding to, and regulation by, MDM2 (and MDMX). Phosphorylations of the peptides further modulate the stability of the helix and control associations with partner proteins.


Cell Cycle | 2011

Conservation of all three p53 family members and Mdm2 and Mdm4 in the cartilaginous fish

David P. Lane; Arumugam Madhumalar; Alison P. Lee; Boon-Hui Tay; Chandra Verma; Sydney Brenner; Byrappa Venkatesh

Analysis of the genome of the elephant shark (Callorhinchus milii), a member of the cartilaginous fishes (Class Chondrichthyes), reveals that it encodes all three members of the p53 gene family, p53, p63 and p73, each with clear homology to the equivalent gene in bony vertebrates (Class Osteichthyes). Thus, the gene duplication events that lead to the presence of three family members in the vertebrates dates to before the Silurian era. It also encodes Mdm2 and Mdm4 genes but does not encode the p19Arf gene. Detailed comparison of the amino acid sequences of these proteins in the vertebrates reveals that they are evolving at highly distinctive rates, and this variation occurs not only between the three family members but extends to distinct domains in each protein.


Cell Cycle | 2010

The Mdm2 and p53 genes are conserved in the Arachnids

David P. Lane; Chit Fang Cheok; Christopher J. Brown; Arumugam Madhumalar; Farid J. Ghadessy; Chandra Verma

The p53 protein and its negative regulator the ubiquitin E3 ligase Mdm2 have been shown to be conserved from the Placazoan to man. In common with D.melanogaster and C.elegans, there is a single copy of the p53 gene in T.adhaerens, while in the vertebrates three p53-like genes can be found: p53 , p63 and p73. The Mdm2 gene is not present within the fully sequenced and highly annotated genomes of C.elegans and D.melanogaster. However, it is present in the Placazoan and the presence of multiple distinct p53 genes in the Sea anemone N.vectensis led us to examine the genomes of other phyla for p53 and Mdm2-like genes. We report here the discovery of an Mdm2-like gene and two distinct p53 like genes in the Arachnid Ioxodes scapularis (Northern Deer Tick). The two predicted Deer Tick p53 proteins are much more highly related to the human p53 protein in sequence than are the fruit fly and nematode proteins. One of the Deer tick genes encodes a p53 protein that is initiated within the DNA binding domain of p53 and shows remarkable homology to the newly described N-terminally truncated delta isoforms of human and zebrafish p53.


Journal of Biological Chemistry | 2010

A Novel p53 Phosphorylation Site within the MDM2 Ubiquitination Signal: II. A MODEL IN WHICH PHOSPHORYLATION AT SER269 INDUCES A MUTANT CONFORMATION TO p53*

Jennifer A. Fraser; Arumugam Madhumalar; Elizabeth H. Blackburn; Janice Bramham; Malcolm D. Walkinshaw; Chandra Verma; Tedd R Hupp

The p53 DNA-binding domain harbors a conformationally flexible multiprotein binding site that regulates p53 ubiquitination. A novel phosphorylation site exists within this region at Ser269, whose phosphomimetic mutation inactivates p53. The phosphomimetic p53 (S269D) exhibits characteristics of mutant p53: stable binding to Hsp70 in vivo, elevated ubiquitination in vivo, inactivity in DNA binding and transcription, increased thermoinstability using thermal shift assays, and λmax of intrinsic tryptophan fluorescence at 403 nm rather than 346 nm, characteristic of wild type p53. These data indicate that p53 conformational stability is regulated by a phosphoacceptor site within an exposed flexible surface loop and that this can be destabilized by phosphorylation. To test whether other motifs within p53 have similarly evolved, we analyzed the effect of Ser215 mutation on p53 function because Ser215 is another inactivating phosphorylation site in the conformationally flexible PAb240 epitope. The p53S215D protein is inactive like p53S269D, whereas p53S215A is as active as p53S269A. However, the double mutant p53S215A/S269A was transcriptionally inactive and more thermally unstable than either individual Ser-Ala loop mutant. Molecular dynamics simulations suggest that (i) solvation of phospho-Ser215 and phospho-Ser269 by positive charged residues or solvent water leads to local unfolding, which is accompanied by local destabilization of the N-terminal loop and global destabilization of p53, and (ii) the double alanine 215/269 mutation disrupts hydrogen bonding normally stabilized by both Ser215 and Ser269. These data indicate that p53 has evolved two serine phosphoacceptor residues within conformationally flexible epitopes that normally stabilize the p53 DNA-binding domain but whose phosphorylation induces a mutant conformation to wild type p53.


Genes & Development | 2016

The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans

Cynthia R. Coffill; Alison P. Lee; Jia Wei Siau; Sharon Chee; Thomas L. Joseph; Yaw Sing Tan; Arumugam Madhumalar; Boon-Hui Tay; Sydney Brenner; Chandra Verma; Farid J. Ghadessy; Byrappa Venkatesh; David P. Lane

The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.


Cell Cycle | 2009

Dimerization of the core domain of the p53 family: A computational study

Arumugam Madhumalar; Lee Hui Jun; David P. Lane; Chandra Verma

Computational models reveal the structural origins of cooperativity in the association of the DNA binding domains (DBD) of p53 (and its two homologues p63 and p73) with consensus DNA. In agreement with experiments they show that cooperativity, as defined by sequential binding of monomers to DNA is strong for p53 and weak for homologues p63 and p73. Computations also suggest that cooperativity can arise from the dimerization of the DBD prior to binding the DNA for all 3 family members. Dimerization between the DBDs is driven by packing interactions originating in residues of helix H1 and loop L3, while DNA binding itself is dominated by local and global electrostatics. Calculations further suggest that low affinity oligomerization of the p53 DBD can precede the oligomerization of the tetramerization domain (TD). During synthesis of multiple chains on the polysome, this may increase fidelity by reducing the possibility of the highly hydrophobic TD from nonspecific aggregation. Mutations have been suggested to test these findings.


Drug Development Research | 2011

Role of protein flexibility in the discovery of new drugs

Gloria Fuentes; Shubhra Ghosh Dastidar; Arumugam Madhumalar; Chandra Verma

Proteins have inherent flexibility, and this plays a critical role in a vast array of biological functions, including ligand binding. Structure‐based drug design (SBDD) strategies incorporate biomolecular structures with computational methods to predict and optimize ligand–receptor complexes. However, these strategies largely involve using static protein snapshots derived by classical X‐ray crystallography, and thus critical and valuable information on flexibility is completely absent. With a historical perspective, we highlight relevant fundamental aspects of the character and importance of the tapestry of flexibility in molecular recognition events, especially when a ligand binds to a protein. Knowledge of methods that can provide details of the full spectrum of flexibility in proteins is a requisite to laying the foundations for linking these concepts with the current algorithms employed in SBDD. Finally, we underline a number of examples that should urge the incorporation of protein flexibility in the industrial drug design pipeline. Drug Dev Res 72: 26–35, 2011.


Theoretical Chemistry Accounts | 2010

Forces mediating protein-protein interactions: a computational study of p53 “approaching” MDM2

Shubhra Ghosh Dastidar; Arumugam Madhumalar; Gloria Fuentes; David P. Lane; Chandra Verma

Collaboration


Dive into the Arumugam Madhumalar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge