Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arun B. Shrestha is active.

Publication


Featured researches published by Arun B. Shrestha.


Conservation Biology | 2009

The Melting Himalayas: Cascading Effects of Climate Change on Water, Biodiversity, and Livelihoods

Jianchu Xu; R. Edward Grumbine; Arun B. Shrestha; Mats Eriksson; Xuefei Yang; Yun Wang; Andreas Wilkes

The Greater Himalayas hold the largest mass of ice outside polar regions and are the source of the 10 largest rivers in Asia. Rapid reduction in the volume of Himalayan glaciers due to climate change is occurring. The cascading effects of rising temperatures and loss of ice and snow in the region are affecting, for example, water availability (amounts, seasonality), biodiversity (endemic species, predator-prey relations), ecosystem boundary shifts (tree-line movements, high-elevation ecosystem changes), and global feedbacks (monsoonal shifts, loss of soil carbon). Climate change will also have environmental and social impacts that will likely increase uncertainty in water supplies and agricultural production for human populations across Asia. A common understanding of climate change needs to be developed through regional and local-scale research so that mitigation and adaptation strategies can be identified and implemented. The challenges brought about by climate change in the Greater Himalayas can only be addressed through increased regional collaboration in scientific research and policy making.


Climatic Change | 2012

Hydrological response to climate change in a glacierized catchment in the Himalayas

Walter W. Immerzeel; L.P.H. van Beek; Markus Konz; Arun B. Shrestha; Marc F. P. Bierkens

The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.


Science | 2016

Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake

Jeffrey S. Kargel; Gregory J. Leonard; Dan H. Shugar; Umesh K. Haritashya; A. Bevington; Eric J. Fielding; Koji Fujita; M. Geertsema; Evan S. Miles; Jakob F. Steiner; E. Anderson; Samjwal Ratna Bajracharya; G. W. Bawden; D. F. Breashears; Alton C. Byers; B. Collins; M. R. Dhital; Andrea Donnellan; T. L. Evans; M. L. Geai; M. T. Glasscoe; D. Green; Deo Raj Gurung; R. Heijenk; A. Hilborn; Kenneth W. Hudnut; C. Huyck; Walter W. Immerzeel; Jiang Liming; R. Jibson

Nepals quake-driven landslide hazards Large earthquakes can trigger dangerous landslides across a wide geographic region. The 2015 Mw 7.8 Gorhka earthquake near Kathmandu, Nepal, was no exception. Kargal et al. used remote observations to compile a massive catalog of triggered debris flows. The satellite-based observations came from a rapid response team assisting the disaster relief effort. Schwanghart et al. show that Kathmandu escaped the historically catastrophic landslides associated with earthquakes in 1100, 1255, and 1344 C.E. near Nepals second largest city, Pokhara. These two studies underscore the importance of determining slope stability in mountainous, earthquake-prone regions. Science, this issue p. 10.1126/science.aac8353; see also p. 147 Satellite imaging isolated hazard potential for earthquake-triggered landslides after the 2015 Gorkha earthquake in Nepal. INTRODUCTION On 25 April 2015, the Gorkha earthquake [magnitude (M) 7.8] struck Nepal, followed by five aftershocks of ≥M 6.0 until 10 June 2015. The earthquakes killed ~9000 people and severely damaged a 550 by 200 km region in Nepal and neighboring countries. Some mountain villages were completely destroyed, and the remote locations, blocked roads, and landslide-dammed rivers prevented ground access to many areas. RATIONALE Our “Volunteer Group” of scientists from nine nations, motivated by humanitarian needs, focused on satellite-based systematic mapping and analysis of earthquake-induced geohazards. We provided information to relief and recovery officials as emergency operations were occurring, while supported by one of the largest-ever NASA-led campaigns of responsive satellite data acquisitions over a vast disaster zone. Our analysis of geohazards distribution allowed evaluation of geomorphic, tectonic, and lithologic controls on earthquake-induced landsliding, process mechanisms, and hazard process chains, particularly where they affected local populations. RESULTS We mapped 4312 coseismic and postseismic landslides. Their distribution shows positive associations with slope and shaking intensity. The highest areal densities of landslides are developed on the downdropped northern tectonic block, which is likely explained by momentary reduction of the normal stress along planes of weakness during downward acceleration. The two largest shocks bracket the high-density landslide distribution, the largest magnitudes of the surface displacement field, and highest peak ground accelerations (PGAs). Landslides are heavily concentrated where PGA was >0.6g and slope is >30°. Additional controls on landslide occurrence are indicated by their clustering near earthquake epicenters and within specific lithologic units. The product of PGA and the sine of surface slope (defined as the landslide susceptibility index) is a good indicator of where most landslides occurred. A tail of the statistical distributions of landslides extends to low values of the landslide susceptibility index. Slight earthquake shaking affected vulnerable materials hanging on steep slopes—such as ice, snow, and glacial debris—and moderate to strong shaking affected poorly consolidated sediments deposited in low-sloping river valleys, which were already poised near a failure threshold. In the remote Langtang Valley, some of the most concentrated destruction and losses of life outside the Kathmandu Valley were directly due to earthquake-induced landslides and air blasts. Complex seismic wave interactions and wave focusing may have caused ridgetop shattering and landslides near Langtang but reduced direct shaking damage on valley floors and at glacial lakes. CONCLUSION The Gorkha earthquake took a tremendous, tragic toll on human lives and culture. However, fortunately no damaging earthquake-caused glacier lake outburst floods were observed by our satellite analysis. The total number of landslides was far fewer than those generated by comparable earthquakes elsewhere, probably because of a lack of surface ruptures, the concentration of deformation along the subsurface thrust fault at 10 to 15 km depth, and the regional dominance of competent high-grade metamorphic and intrusive igneous rock types. Landslide distribution and effects of a huge landslide. (A) Landslides (purple dots) are concentrated mostly north of the tectonic hinge-line. Also shown are the epicenters of the main shock and largest aftershock. Displacements are from the JAXA ALOS-2 ScanSAR interferogram (21 Feb and 2 May 2015 acquisitions). (B and C) Before-and-after photographs obtained by D. Breashears in Langtang Valley showing complete destruction of a large part of Langtang village by a huge landslide. The Gorkha earthquake (magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9000 people and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision-makers. We mapped 4312 coseismic and postseismic landslides. We also surveyed 491 glacier lakes for earthquake damage but found only nine landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.


Mountain Research and Development | 2007

Glacial Lake Outburst Floods in the Sagarmatha Region

Birendra Bajracharya; Arun B. Shrestha; Lokap Rajbhandari

Abstract Glacial lake outburst floods (GLOFs) are common natural hazards in the Himalaya. These floods, usually of large magnitude, can severely affect fragile mountain ecosystems and their limited economic activities. In this study, GLOF hazard in the Sagarmatha region (national park and buffer zone) was assessed using dam break and hydrodynamic modeling. The available data from the Dig Tsho GLOF of 1985 were used to validate many of the model outputs. The technique was further applied to GLOF hazard assessment of Imja Lake, the largest and potentially most dangerous glacial lake in the region. The peak outflow discharge of an Imja GLOF is estimated at 5463 m3/s. The peak discharge attenuates to about 2000 m3/s at the boundary of the buffer zone at about 45 km from the outburst site. Finally, a GLOF vulnerability rating map was prepared and an assessment of vulnerable settlements was carried out. The study was found to be a cost-effective means of obtaining preliminary information on the extent and impact of possible GLOF events—information that is useful for developing plans for early warning systems and implementing management plans.


Mountain Research and Development | 2012

Challenges and Uncertainties in Hydrological Modeling of Remote Hindu Kush-Karakoram- Himalayan (HKH) Basins: Suggestions for Calibration Strategies

Francesca Pellicciotti; Cyrill Buergi; Walter W. Immerzeel; Markus Konz; Arun B. Shrestha

Abstract Assessment of water resources from remote mountainous catchments plays a crucial role for the development of rural areas in or in the vicinity of mountain ranges. The scarcity of data, however, prevents the application of standard approaches that are based on data-driven models. The Hindu Kush–Karakoram–Himalaya mountain range is a crucial area in terms of water resources, but our understanding of the response of its high-elevation catchments to a changing climate is hindered by lack of hydro-meteorological and cryospheric data. Hydrological modeling is challenging here because internal inconsistencies—such as an underestimation of precipitation input that can be compensated for by an overestimation of meltwater—might be hidden due to the complexity of feedback mechanisms that govern melt and runoff generation in such basins. Data scarcity adds to this difficulty by preventing the application of systematic calibration procedures that would allow identification of the parameter set that could guarantee internal consistency in the simulation of the single hydrological components. In this work, we use simulations from the Hunza River Basin in the Karakoram region obtained with the hydrological model TOPKAPI to quantify the predictive power of discharge and snow-cover data sets, as well as the combination of both. We also show that short-term measurements of meteorological variables such as radiative fluxes, wind speed, relative humidity, and air temperature from glacio-meteorological experiments are crucial for a correct parameterization of surface melt processes. They enable detailed simulations of the energy fluxes governing glacier–atmosphere interaction and the resulting ablation through energy-balance modeling. These simulations are used to derive calibrated parameters for the simplified snow and glacier routines in TOPKAPI. We demonstrate that such parameters are stable in space and time in similar climatic regions, thus reducing the number of parameters requiring calibration.


Mountain Research and Development | 2012

Glaciers as a Proxy to Quantify the Spatial Distribution of Precipitation in the Hunza Basin

Walter W. Immerzeel; Francesca Pellicciotti; Arun B. Shrestha

Abstract Accurate quantification of the spatial distribution of precipitation in mountain regions is crucial for assessments of water resources and for the understanding of high-altitude hydrology, yet it is one of the largest unknowns due to the lack of high-altitude observations. The Hunza basin in Pakistan contains very large glacier systems, which, given the melt, cannot persist unless precipitation (snow input) is much higher than what is observed at the meteorological stations, mostly located in mountain valleys. Several studies, therefore, suggest strong positive vertical precipitation lapse rates; in the present study, we quantify this lapse rate by using glaciers as a proxy. We assume a neutral mass balance for the glaciers for the period from 2001 to 2003, and we inversely model the precipitation lapse by balancing the total accumulation in the catchment area and the ablation over the glacier area for the 50 largest glacier systems in the Hunza basin in the Karakoram. Our results reveal a vertical precipitation lapse rate that equals 0.21 ± 0.12% m−1, with a maximum precipitation at an elevation of 5500 masl. We showed that the total annual basin precipitation (828 mm) is 260% higher than what is estimated based on interpolated observations (319 mm); this has major consequences for hydrological modeling and water resource assessments in general. Our results were validated by using previously published studies on individual glaciers as well as the water balance of the Hunza basin. The approach is more widely applicable in mountain ranges where precipitation measurements at high altitude are lacking.


Geomatics, Natural Hazards and Risk | 2010

Glacial lake outburst flood risk assessment of Sun Koshi basin, Nepal

Arun B. Shrestha; Mats Eriksson; Pradeep K. Mool; Pawan Kumar Ghimire; B. Mishra; Narendra Raj Khanal

The ongoing retreat of glaciers in the Hindu Kush-Himalaya (HKH) is associated with climate change. While deglaciation can cause a suite of impacts, one of the most visible and tangible impacts is the formation of glacial lakes. Some of these lakes can burst out causing large flash floods with the potential to cause significant damage to property, lives and livelihoods. At the moment, knowledge of the current glacial lake outburst flood (GLOF) risk in the HKH is incomplete, and a proper risk assessment is often circumvented. There is a need for a comprehensive GLOF risk assessment in order to support proper planning of mitigation and adaptation strategies in this context. In this paper we present a methodological approach for the GLOF risk assessment. The major part of the risk assessment is GLOF simulation and downstream impact assessment. The methodology was applied to the Sun Koshi river basin, a trans-boundary river basin between Tibet (China) and Nepal. A glacial lake outburst hydrograph was simulated using a dambreak model. The outburst flood was routed along the river using a hydrodynamic model to estimate the potential impact areas. A field survey was conducted to assess the potential damage caused by the GLOF. The peak outburst flood could be in the order of 7900 m3 s−1. The analysis shows that about 950 ha of land and a large amount of infrastructure are exposed to the GLOF. The economic risk due to the direct impact of a GLOF is estimated to be about US


Climate Dynamics | 2015

Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS)

R. Rajbhandari; Arun B. Shrestha; Ashwini Kulkarni; S. K. Patwardhan; Sagar Ratna Bajracharya

197 million.


International Journal of Water Resources Development | 2015

Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: a review of the literature

Santosh Nepal; Arun B. Shrestha

A regional climate modelling system, the Providing REgional Climates for Impacts Studies developed by the Hadley Centre for Climate Prediction and Research, has been used to study future climate change scenarios over Indus basin for the impact assessment. In this paper we have examined the three Quantifying Uncertainty in Model Predictions simulations selected from 17-member perturbed physics ensemble generated using Hadley Centre Coupled Module. The climate projections based on IPCC SRES A1B scenario are analysed over three time slices, near future (2011–2040), middle of the twenty first century (2041–2070), and distant future (2071–2098). The baseline simulation (1961–1990) was evaluated with observed data for seasonal and spatial patterns and biases. The model was able to resolve features on finer spatial scales and depict seasonal variations reasonably well, although there were quantitative biases. The model simulations suggest a non-uniform change in precipitation overall, with an increase in precipitation over the upper Indus basin and decrease over the lower Indus basin, and little change in the border area between the upper and lower Indus basins. A decrease in winter precipitation is projected, particularly over the southern part of the basin. Projections indicate greater warming in the upper than the lower Indus, and greater warming in winter than in the other seasons. The simulations suggest an overall increase in the number of rainy days over the basin, but a decrease in the number of rainy days accompanied by an increase in rainfall intensity in the border area between the upper and lower basins, where the rainfall amount is highest.


PLOS ONE | 2016

Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

A. F. Lutz; Walter W. Immerzeel; P. D. A. Kraaijenbrink; Arun B. Shrestha; Marc F. P. Bierkens

The Indus, Ganges and Brahmaputra river basins support 700 million people in Asia. The water resources are used for irrigation, drinking, industry, navigation and hydropower. This paper reviews the literature on the impact of climate change on the hydrological regime of these river basins and suggests that the different basins are likely to be affected in different ways. Climate change will have a marked affect on meltwater in the Indus Basin and may result in increased flood risk in the Brahmaputra Basin. The overall impact on annual discharge is likely to be low, but more studies are required to understand intra-annual changes and the impact of extreme events.

Collaboration


Dive into the Arun B. Shrestha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sagar Ratna Bajracharya

International Centre for Integrated Mountain Development

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santosh Nepal

International Centre for Integrated Mountain Development

View shared research outputs
Top Co-Authors

Avatar

Guoyu Ren

China Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samjwal Ratna Bajracharya

International Centre for Integrated Mountain Development

View shared research outputs
Top Co-Authors

Avatar

Evan S. Miles

Scott Polar Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge