Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arup Banerjee is active.

Publication


Featured researches published by Arup Banerjee.


Journal of Physics D | 2016

Size and temperature dependence of the photoluminescence properties of NIR emitting ternary alloyed mercury cadmium telluride quantum dots

Amardeep M. Jagtap; Abhijit Chatterjee; Arup Banerjee; Naresh Babu Pendyala; K. S. R. Koteswara Rao

Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8 x 10(-4) eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 MU eV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.


Journal of Applied Physics | 2016

Interactions between photoexcited NIR emitting CdHgTe quantum dots and graphene oxide

Amardeep M. Jagtap; Vaibhav Varade; Bharathi Konkena; K. P. Ramesh; Abhijit Chatterjee; Arup Banerjee; Naresh Babu Pendyala; K. S. R. Koteswara Rao

Hydrothermally grown mercury cadmium telluride quantum dots (CdHgTe QDs) are decorated on graphene oxide (GO) sheets through physisorption. The structural change of GO through partial reduction of oxygen functional groups is observed with X-ray photoelectron spectroscopy in GO-QDs composites. Raman spectroscopy provides relatively a small change (∼1.1 times) in D/G ratio of band intensity and red shift in G band from 1606 cm−1 to 1594 cm−1 in GO-CdHgTe QDs (2.6 nm) composites, which indicates structural modification of GO network. Steady state and time resolved photoluminescence (PL) spectroscopy shows the electronic interactions between photoexcited near infrared emitting CdHgTe QDs and GO. Another interesting observation is PL quenching in the presence of GO, and it is quite effective in the case of smaller size QDs (2.6 nm) compared to the larger size QDs (4.2 nm). Thus, the observed PL quenching is attributed to the photogenerated electron transfer from QDs to GO. The photoexcited electron transfer ra...


Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV | 2016

Dynamic MTF improvement scheme and its validation for CCD operating in TDI mode for Earth imaging applications

Neeraj Dubey; Arup Banerjee

The paper presents the scheme for improving the image contrast in the remote sensing images and highlights the novelty in hardware & software design in the test system developed for measuring image contrast function. Modulation transfer function (MTF) is the most critical quality element of the high-resolution imaging payloads for earth observation consisting of TDI-CCD (Time Delayed Integration Charge Coupled Device) image. From the mathematical model for MTF Smear MTF of 65% (35% degradation) is observed. Then a operating method for TDI-CCD is developed, using which 96% of Motion Smear MTF will occur within the imaging operation. As a major part of the validation, indigenously designed and developed a test system for measuring the dynamic MTF of TDI Sensors which consists of the optical scanning system, TDI-CCD camera drive & video processing electronics, thermal control system and telecentric uniform illumination system. The experimental results confirm that image quality improvement can be achieved by this method. This method is now implemented in the flight model hardware of the remote sensing payload.


ieee region 10 conference | 2016

Photonic Sensor for railway track safety

Arup Banerjee; Parul Singh; Ashwani Kumar; Usha S Merita

This paper brings out the necessity of a sensor system to monitor worlds 4th largest railway network, running through urban and remote rural parts of India, and thereby, avoid accidents by effective surveillance of this national asset. The paper discusses available sensor technologies and proposes a sensor configuration suitable for 24/7 (day - night) operation under different weather conditions. In order to permit track surveillance covering across atmospheric (fair weather, haze, smoke, and CAT-I Fog) and illumination (day/night and seasonal variation) conditions, pulsed illuminator with In0.53Ga0.47As/Si hybrid focal plane array with pixelated polarizer is proposed. The proposed approach would provide both intensity and depth map of target along with polarization. The brief design of the InGaAs focal plane array (FPA) fusion bonded with Si based CCD readout is discussed. This paper also discusses overall system level performance that could be achieved using the proposed FPA.


Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI | 2016

SW-MW infrared spectrometer for lunar mission

Arup Banerjee; Amiya Biswas; Shaunak Joshi; Ankush Kumar; Sami Ur Rehman; Satish Sharma; Sandip Somani; Sunil Bhati; Jitendra Karelia; Anish Saxena; Arup Roy Chowdhury

SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon’s surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at ~240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target temperatures. Subsequent segments of the paper bring out system design aspects and trade-off analyses.


Lidar Remote Sensing for Environmental Monitoring XV | 2016

Performance of laser based optical imaging system

Dhrupesh Shah; Arup Banerjee; Anup Vora; Amiya Biswas; Naimesh Patel; Amit Kurulkar; Ashutosh Dutt

Day night imaging application requires high dynamic range optical imaging system to detect targets of interest covering mid-day (>32000 Lux)[1], and moonless night (∼1mLux)[1] under clear sky- (visibility of >10km, atmospheric loss of <1dB/km) and hazy (visibility of >500m, atmospheric loss of >15dB/Km) conditions. Major governing factors for development of such camera systems are (i) covert imaging with ability to identify the target, (ii) imaging irrespective to the scene background, (iii) reliable operation , (iv) imaging capabilities in inclement weather conditions, (v) resource requirement vs availability power & mass, (vi) real-time data processing, (vii) self-calibration, and (viii) cost. Identification of optimum spectral band of interest is most important to meet these requirements. Conventional detection systems sensing in MWIR and LWIR band has certain draw backs in terms of target detection capabilities, susceptibility to background and huge thermo-mechanical resource requirement. Alternatively, range gated imaging camera system sensing in NIR/SWIR spectrum has shown significant potential to detect wide dynamic range targets. ToF Camera configured in NIR band has certain advantages in terms of Focal Plane Assembly (FPA) development with large format detectors and thermo-mechanical resource requirement compared to SWIR band camera configuration. In past, ToF camera systems were successfully configured in NIR spectrum using silicon based Electron Multiplying CCD (EMCCD), Intensifier CCD (ICCD) along with Gating device and pulsed laser source having emission in between 800nm to 900nm. However, these systems have a very low dynamic range and not suitable for clear sky mid-day conditions. Recently silicon based scientific grade CMOS image sensors have shown significant improvement in terms of high NIR responsivity and available in bigger formats (5MP or more), adequate Full well capacity for day time imaging (>30Ke), very low readout noise (<2e) required for night imaging and higher frame rate (more than 100fps). Taking advantage of these, laser based camera system configuration was worked out and presented in this paper using scientific grade CMOS sensor and NIR Laser. Camera can image target range from 4km to 5km with resolution of 5cm. Camera can have instantaneous coverage of 100mx100m (at 5km). Scientific grade CMOS sensor could also be used for clear sky day time imaging conditions with Laser off condition. To reduce the laser energy requirement, FPA required to be operated in multi-integration mode where multiple low energy pulses could be thrown within given integration time and detector and its associated electronics will collect and accumulate only those photons which are reflected back from the target of interest using appropriate gating control mechanism. Paper will bring out system engineering aspects for finalization of imaging spectrum, optical parameters in terms of aperture & focal length, required laser energy, highlighting advantage of pulse mode operation of laser compared to continuous mode operation in terms of laser energy & back-scattered light, silicon based optical detector performance results and post processing aspects for target detection. Paper will also discuss achieved performance of proto-model camera.


Journal of Physics D | 2016

Investigations on the physical origin of lateral photovoltage in PbS-colloidal quantum dot/Si heterojunctions

Atul Prakash Abhale; K. S. R. Koteswara Rao; Naresh Babu Pendyala; Arup Banerjee

Restricted area heterojunctions, an array of lead sulfide colloidal quantum dots (PbS-CQDs) and crystalline silicon, are studied with a non-destructive remote contact light beam induced current (RC-LBIC) technique. As well as getting good quality active area images we observed an anomalous unipolar signal response for the PbS-CQD/n-Si devices and a conventionally expected bipolar signal profile for the PbS-CQD/p-Si devices. Interestingly, our simulation results consistently yielded a unipolar and bipolar nature in the signals related to the PbSCQD/n-Si and PbS-CQD/p-Si heterostructures, respectively. In order to explain the physical mechanism involved in the unipolar signal response of the PbS-CQD/n-Si devices, we propose a model based on the band alignment in the heterojunctions, in addition to the distribution of photo-induced excess majority carriers across the junction. Given that the RC-LBIC technique is well suited to this context, the presence of these two distinct mechanisms (the bipolar and unipolar nature of the signals) needs to be considered in order to have a better interpretation of the data in the characterization of an array of homo/heterojunctions.


Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV | 2016

Design, development, characterization and qualification of infrared focal plane area array detectors for space-borne imaging applications

Ankur Jain; Arup Banerjee

This paper discusses the design, development, characterization and qualification aspects of large format Infrared Focal Plane Arrays (IRFPA) required for panchromatic, multi-, hyper- and ultra-spectral imaging applications from a space-borne imager. Detection of feeble radiant flux from the intended target in narrow spectral bands requires a highly sensitive low noise sensor array with high well capacity. For this the photodiode arrays responsive in desired spectral band are grown using different growth techniques and flip-chip bonded with a suitable Si Read-out ICs (ROICs) for signal conditioning. IR detectors require cryogenic cooling to achieve background limited performance. Although passive radiative cooling is always the preferred choice of cooling in space, it is not suitable for cooling IRFPAs due to high thermal loads. To facilitate characterization of IRFPAs and cool them to desired cryogenic temperature, an Integrated Detector Dewar Cooler Assembly (IDDCA) is essential where the detector array sits over the cold tip of an active cooler and the detector cooler assembly is vacuum sealed in a thermally isolated Dewar. A cold shield above the sensor array inside the Dewar restricts its field-of-view and a cold filter fine tunes its spectral response. In this paper, various constituents of an IRFPA like sensor array materials, growth techniques, ROICs, filters, cold shields, cooling techniques etc., their types and selection criteria for different applications are discussed in detail. Design aspects of IRFPA characterization test bench, challenges involved in radiometric and spectral characterization and space qualification of such IDDCA based IRFPAs are also discussed.


Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV | 2016

Electrical coupling in multi-array charge coupled devices

Parul Singh; Vishal Sakarvadiya; Neeraj Dubey; Shweta Kirkire; Nitesh Thapa; Arup Banerjee

Silicon based charge coupled device (CCD) performances have improved immensely over the years. Scientific community across the globe target challenging remote sensing applications with CCD as optical imaging detector. Over the years, both pixel count (from few hundreds to few tens of thousands) and line readout rate (from few kHz to few tens of kHz) have increased considerably. Pixels are readout using a large number of output ports driven up to few tens of MHz Moreover, for multi-spectral applications, same Si die contains multiple arrays sharing input stimuli. This is usually done to optimize package pin count. Si die as well as package level layout of clock and bias lines become critical for closely spaced multi-array devices. The inter-array separation may go down to few hundreds of microns when filter coating is laid on top of the die. Die level layout becomes quite critical for devices with such architecture. The inter-array (consecutive arrays) separation is optimized to reduce optical coupling / stray light in devices integrated multi-band strip filter. Layout constraints along with shared bias/clock lines are known to produce electrical cross-talk or coupling. Effect of this (within one array or between two arrays) cross-talk is more pronounced in systems having low noise floor. Video signal dependent coupling in a multi-port system becomes quite complex and leads to a relatively noisier system (post correction). The paper presents results of simulations and tests (pre and post correction) addressing this type of electrical coupling. The paper presents cause, impact and possible remedial measures to minimize such coupling in a multi-array, multi-port TDI CCD from 1.3% to below 0.06%.


Journal of Applied Physics | 2014

Simulating the spectral response of quantum dot-in-well infrared photodetectors from eight band k.p method

V. Anjan Kumar; Naresh Babu Pendyala; Arup Banerjee

Conduction band energy levels in quantum-dot-in-a-well structures are computed by eight band k.p method (Burt-Foreman Hamiltonian) using finite element software. Optical absorption spectrum due to intersubband transitions is simulated using Fermi golden rule. The use of contact pair boundary condition in strain calculation and criteria for choosing band mixing parameter (Ep) to avoid the spurious solutions are examined in this paper. The simulated intersubband optical absorption spectrum of different structures reported in the literature is in close agreement with the experimentally measured photoconductive absorption region and shows that the method can be used as an effective modeling for quick design of the heterostructures based infrared photodetectors for various wavelengths.

Collaboration


Dive into the Arup Banerjee's collaboration.

Top Co-Authors

Avatar

Naresh Babu Pendyala

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Abhijit Chatterjee

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amardeep M. Jagtap

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dhrupesh Shah

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Parul Singh

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Anish Saxena

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Arup Roy Chowdhury

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ashwani Kumar

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge