Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asad Mian is active.

Publication


Featured researches published by Asad Mian.


Nature Medicine | 2011

Requirement of argininosuccinate lyase for systemic nitric oxide production

Ayelet Erez; Sandesh C.S. Nagamani; Oleg A. Shchelochkov; Muralidhar H. Premkumar; Philippe M. Campeau; Yuqing Chen; Harsha K. Garg; Li Li; Asad Mian; Terry Bertin; Jennifer O Black; Heng Zeng; Yaoping Tang; Anilkumar K. Reddy; Marshall Summar; William E. O'Brien; David G. Harrison; William E. Mitch; Juan C. Marini; Judy L. Aschner; Nathan S. Bryan; Brendan Lee

Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.


Molecular Genetics and Metabolism | 2010

Phase 2 Comparison of A Novel Ammonia Scavenging Agent With Sodium Phenylbutyrate In Patients With Urea Cycle Disorders: Safety, Pharmacokinetics And Ammonia Control

Brendan Lee; William J. Rhead; George A. Diaz; Bruce F. Scharschmidt; Asad Mian; Oleg A. Shchelochkov; Jean-Francois Marier; Martin Beliveau; Joseph Mauney; Klara Dickinson; Antonia Martinez; Sharron Gargosky; Masoud Mokhtarani; Susan A. Berry

UNLABELLED Glycerol phenylbutyrate (glyceryl tri (4-phenylbutyrate)) (GPB) is being studied as an alternative to sodium phenylbutyrate (NaPBA) for the treatment of urea cycle disorders (UCDs). This phase 2 study explored the hypothesis that GPB offers similar safety and ammonia control as NaPBA, which is currently approved as adjunctive therapy in the chronic management of UCDs, and examined correlates of 24-h blood ammonia. METHODS An open-label, fixed sequence switch-over study was conducted in adult UCD patients taking maintenance NaPBA. Blood ammonia and blood and urine metabolites were compared after 7 days (steady state) of TID dosing on either drug, both dosed to deliver the same amount of phenylbutyric acid (PBA). RESULTS Ten subjects completed the study. Adverse events were comparable for the two drugs; 2 subjects experienced hyperammonemic events on NaPBA while none occurred on GPB. Ammonia values on GPB were approximately 30% lower than on NaPBA (time-normalized AUC=26.2 vs. 38.4 micromol/L; Cmax=56.3 vs. 79.1 micromol/L; not statistically significant), and GPB achieved non-inferiority to NaPBA with respect to ammonia (time-normalized AUC) by post hoc analysis. Systemic exposure (AUC(0-24)) to PBA on GPB was 27% lower than on NaPBA (540 vs. 739 microgh/mL), whereas exposure to phenylacetic acid (PAA) (575 vs. 596 microg h/mL) and phenylacetylglutamine (PAGN) (1098 vs. 1133 microg h/mL) were similar. Urinary PAGN excretion accounted for approximately 54% of PBA administered for both NaPBA and GPB; other metabolites accounted for <1%. Intact GPB was generally undetectable in blood and urine. Blood ammonia correlated strongly and inversely with urinary PAGN (r=-0.82; p<0.0001) but weakly or not at all with blood metabolite levels. CONCLUSIONS Safety and ammonia control with GPB appear at least equal to NaPBA. Urinary PAGN, which is stoichiometrically related to nitrogen scavenging, may be a useful biomarker for both dose selection and adjustment for optimal control of venous ammonia.


Trends in Molecular Medicine | 2002

Urea-cycle disorders as a paradigm for inborn errors of hepatocyte metabolism

Asad Mian; Brendan Lee

Urea-cycle disorders (UCDs) are a group of inborn errors of hepatocyte metabolism that are caused by the loss of enzymes involved in the process of transferring nitrogen from ammonia to urea, via the urea cycle (UC). Recent genetic analyses of inherited disorders that present with hyperammonemia demonstrate the function of cellular transporters that regulate the availability of UC intermediates. The regulation of UC intermediates, such as arginine, could have far reaching implications on nitric-oxide synthesis and vascular tone. Hence, each UCD and UC-related disorder constitutes a unique gene-nutrient interaction that is crucial for postnatal homeostasis. Recent advances in the diagnosis and management of UCDs include the application of in vivo metabolic-flux measurements. Cumulative morbidity is still high despite dietary and pharmacological therapies and, hence, both cell and gene therapies are being pursued as possible long-term corrective treatments. Although gene-replacement therapy has suffered recent clinical setbacks, new vector developments offer hope for the treatment of cell-autonomous defects of hepatocyte metabolism.


Pediatric Infectious Disease Journal | 2013

Global gene expression profiling in infants with acute respiratory syncytial virus broncholitis demonstrates systemic activation of interferon signaling networks.

Kristine L. Bucasas; Asad Mian; Gail J. Demmler-Harrison; Alison C. Caviness; Pedro A. Piedra; Luis M. Franco; Chad A. Shaw; Yijie Zhai; Xueqing Wang; Molly S. Bray; Robert B. Couch; John W. Belmont

Background: Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to better understand the systemic host response to acute RSV bronchiolitis in infants and young children. Methods: Patients (age ⩽ 24 months) who were clinically diagnosed with acute bronchiolitis and who had a positive rapid test for RSV assay were recruited from the Texas Children’s Hospital emergency department. Global gene expression of peripheral whole blood cells were analyzed in 21 cases and 37 age-matched healthy controls. Transcripts exhibiting significant upregulation and downregulation as a result of RSV infection were identified and confirmed in a subset of samples using RNA sequencing. The potential pathways affected were analyzed. Results: Blood was obtained from patients with acute RSV bronchiolitis (mean age 6 months). Of these, 43% were admitted to the hospital, 52% were given intravenous fluids and 24% received oxygen. Highly significant expression differences were detected in a discovery cohort of White infants (N = 33) and validated in an independent group of African–American infants (N = 19). Individuals with mild disease (N = 15) could not be distinguished from subjects with clinically moderate disease (N = 5). Pathway enrichment analyses of the differentially expressed genes demonstrated extensive activation of the innate immune response, particularly the interferon signaling network. There was a significant downregulation of transcripts corresponding to antigen presentation.


Pediatric Research | 2011

Urinary nitrate might be an early biomarker for pediatric acute kidney injury in the emergency department.

Asad Mian; Yue Du; Harsha K. Garg; A. Chantal Caviness; Stuart L. Goldstein; Nathan S. Bryan

NO is involved in normal kidney function and perturbed in acute kidney injury (AKI). We hypothesized that urinary concentration of NO metabolites, nitrite, and nitrate would be lower in children with early AKI presenting to the emergency department (ED), when serum creatinine (SCr) was uninformative. Patients up to 19 y were recruited if they had a urinalysis and SCr obtained for routine care. Primary outcome, AKI, was defined by pediatric Risk, Injury, Failure, Loss of function, End-stage renal disease (pRIFLE) criteria. Urinary nitrite and nitrate were determined by HPLC. A total of 252 patients were enrolled, the majority (93%) of whom were without AKI. Although 18 (7%) had AKI by pRIFLE, 50% may not have had it identified by the SCr value alone at the time of visit. Median urinary nitrate was lower for injury versus risk (p = 0.03); this difference remained significant when the injury group was compared against the combined risk and no AKI groups (p = 0.01). Urinary nitrite was not significantly different between groups. Thus, low urinary nitrate is associated with AKI in the pediatric ED even when SCr is normal. Predictive potential of this putative urinary biomarker for AKI needs further evaluation in sicker patients.


The Open Biochemistry Journal | 2013

Nitric oxide and its metabolites in the critical phase of illness: rapid biomarkers in the making

Asad Mian; Mayank Aranke; Nathan S. Bryan

The potential of nitric oxide (NO) as a rapid assay biomarker, one that could provide a quantum leap in acute care, remains largely untapped. NO plays a crucial role as bronchodilator, vasodilator and inflammatory mediator. The main objective of this review is to demonstrate how NO is a molecule of heavy interest in various acute disease states along the emergency department and critical care spectrum: respiratory infections, central nervous system infections, asthma, acute kidney injury, sepsis, septic shock, and myocardial ischemia, to name just a few. We discuss how NO and its oxidative metabolites, nitrite and nitrate, are readily detectable in several body compartments and fluids, and as such they are associated with many of the pathophysiological processes mentioned above. With methods such as high performance liquid chromatography and chemiluminescence these entities are relatively easy and inexpensive to analyze. Emphasis is placed on diagnostic rapidity, as this relates directly to quality of care in acute care situations. Further, a rationale is provided for more bench, translational and clinical research in the field of NO biomarkers for such settings. Developing standard protocols for the aforementioned disease states, centered on concentrations of NO and its metabolites, can prove to revolutionize diagnostics and prognostication along a spectrum of clinical care. We present a strong case for developing these biomarkers more as point-of-care assays with potential of color gradient test strips for rapid screening of disease entities in acute care and beyond. This will be relevant to global health.


Free Radical Biology and Medicine | 2013

Acute effects of hemodialysis on nitrite and nitrate: potential cardiovascular implications in dialysis patients.

Nathan S. Bryan; Ashley C. Torregrossa; Asad Mian; D. Lindsey Berkson; Christian M. Westby; Jack W. Moncrief

Cardiovascular mortality in dialysis patients remains a serious problem. It is 10 to 20 times higher than in the general population. No molecular mechanism has been proven to explain this increased mortality, although nitric oxide (NO) has been implicated. The objective of our study was to determine the extent of the removal of the NO congeners nitrite and nitrate from plasma and saliva by hemodialysis, as this might disrupt physiological NO bioactivity and help explain the health disparity in dialysis patients. Blood and saliva were collected at baseline from patients on dialysis and blood was collected as it exited the dialysis unit. Blood and saliva were again collected after 4-5h of dialysis. In the 27 patients on dialysis, baseline plasma nitrite and nitrate by HPLC were 0.21±0.03 and 67.25±14.68 μM, respectively. Blood immediately upon exit from the dialysis unit had 57% less nitrite (0.09±0.03 μM; P=0.0008) and 84% less nitrate (11.04 μM; P=0.0003). After 4-5h of dialysis, new steady-state plasma levels of nitrite and nitrate were significantly lower than baseline, 0.09±0.01 μM (P=0.0002) and 16.72±2.27 μM (P=0.001), respectively. Dialysis also resulted in a significant reduction in salivary nitrite (232.58±75.65 to 25.77±10.88 μM; P=0.01) and nitrate (500.36±154.89 to 95.08±24.64 μM; P=0.01). Chronic and persistent depletion of plasma and salivary nitrite and nitrate probably reduces NO bioavailability and may explain in part the increased cardiovascular mortality in the dialysis patient.


Journal of Inherited Metabolic Disease | 2007

Intrauterine growth retardation and placental vacuolization as presenting features in a case of GM1 gangliosidosis

Nicola Brunetti-Pierri; Asad Mian; Rebecca Luetchke; Brett H. Graham

SummaryDiagnosis of GM1 gangliosidosis (OMIM 230500) is usually based on the presence of physical signs of storage such as coarse facial features, corneal clouding, cherry red macula, hepatosplenomegaly and skeletal dysostosis. More rarely it can present as nonimmune hydrops. We describe a male patient with GM1 gangliosidosis born to healthy first-cousin parents of Indian Asian descent. The disease was recognized on the basis of diffuse vacuolization of cyto- and syncytiotrophoblasts, stromal cells and amniocytes on histological analysis of the placenta. The placental examination was prompted by the prenatal detection of intrauterine growth retardation (IUGR) and oligohydramnios at 32 weeks of gestation. The diagnosis of GM1 gangliosidosis was supported by both biochemical and molecular data. The β-galactosidase enzymatic activity on leukocytes was severely reduced, while the neuraminidase activity on fibroblasts was normal, thereby excluding galactosialidosis. The molecular analysis of the β-galactosidase gene (GLB1) revealed a previously unreported splicing mutation (IVS1+2 insT) in homozygous state. Our case further illustrates the value of histological examination of the placenta in the diagnosis of lysosomal storage disorders and shows that either hydrops or IUGR can be presenting features of GM1 gangliosidosis in the neonatal period.


The Open Respiratory Medicine Journal | 2012

Nitric Oxide Metabolites as Biomarkers for Influenza-Like Acute Respiratory Infections Presenting to the Emergency Room

Asad Mian; Federico R. Laham; Andrea T. Cruz; Harsha K. Garg; Charles G. Macias; A. Chantal Caviness; Pedro A. Piedra

Aims: Nitric oxide (NO) is increased in the respiratory tract in pulmonary infections. The aim was to determine whether nasal wash NO metabolites could serve as biomarkers of viral pathogen and disease severity in children with influenza-like illness (ILI) presenting to the emergency department (ED) during the 2009 influenza A H1N1 pandemic. Methods: Children ≤18 years old presenting to the ED with ILI were eligible. Nasal wash specimens were tested for NO metabolites, nitrate and nitrite, by HPLC and for respiratory viruses by real-time PCR. Results: Eighty-nine patients with ILI were prospectively enrolled during Oct-Dec, 2009. In the entire cohort, nasal wash nitrite was low to undetectable (interquartile range [IQR], 0 - 2 μM), while median nitrate was 3.4 μM (IQR 0-8.6). Rhinovirus (23%), respiratory syncytial virus (RSV) (20%), novel H1N1 (19%), and adenovirus (11%) were the most common viruses found. Children with RSV subtype B-associated ILI had higher nitrate compared to all other viruses combined (P=0.002). Conclusion: Concentration of NO-derived nitrate in nasal secretions in children in the ED is suggestive of viral pathogen causative for ILI, and thus might be of clinical utility. Predictive potential of this putative biomarker for ILI needs further evaluation in sicker patients in a prospective manner.


Journal of Visualized Experiments | 2012

Analytical Techniques for Assaying Nitric Oxide Bioactivity

Hong Jiang; Deepa K. Parthasarathy; Ashley C. Torregrossa; Asad Mian; Nathan S. Bryan

Nitric oxide (NO) is a diatomic free radical that is extremely short lived in biological systems (less than 1 second in circulating blood). NO may be considered one of the most important signaling molecules produced in our body, regulating essential functions including but not limited to regulation of blood pressure, immune response and neural communication. Therefore its accurate detection and quantification in biological matrices is critical to understanding the role of NO in health and disease. With such a short physiological half life of NO, alternative strategies for the detection of reaction products of NO biochemistry have been developed. The quantification of relevant NO metabolites in multiple biological compartments provides valuable information with regards to in vivo NO production, bioavailability and metabolism. Simply sampling a single compartment such as blood or plasma may not always provide an accurate assessment of whole body NO status, particularly in tissues. The ability to compare blood with select tissues in experimental animals will help bridge the gap between basic science and clinical medicine as far as diagnostic and prognostic utility of NO biomarkers in health and disease. Therefore, extrapolation of plasma or blood NO status to specific tissues of interest is no longer a valid approach. As a result, methods continue to be developed and validated which allow the detection and quantification of NO and NO-related products/metabolites in multiple compartments of experimental animals in vivo. The established paradigm of NO biochemistry from production by NO synthases to activation of soluble guanylyl cyclase (sGC) to eventual oxidation to nitrite (NO(2)(-)) and nitrate (NO(3)(-)) may only represent part of NOs effects in vivo. The interaction of NO and NO-derived metabolites with protein thiols, secondary amines, and metals to form S-nitrosothiols (RSNOs), N-nitrosamines (RNNOs), and nitrosyl-heme respectively represent cGMP-independent effects of NO and are likely just as important physiologically as activation of sGC by NO. A true understanding of NO in physiology is derived from in vivo experiments sampling multiple compartments simultaneously. Nitric oxide (NO) methodology is a complex and often confusing science and the focus of many debates and discussion concerning NO biochemistry. The elucidation of new mechanisms and signaling pathways involving NO hinges on our ability to specifically, selectively and sensitively detect and quantify NO and all relevant NO products and metabolites in complex biological matrices. Here, we present a method for the rapid and sensitive analysis of nitrite and nitrate by HPLC as well as detection of free NO in biological samples using in vitro ozone based chemiluminescence with chemical derivitazation to determine molecular source of NO as well as ex vivo with organ bath myography.

Collaboration


Dive into the Asad Mian's collaboration.

Top Co-Authors

Avatar

Nathan S. Bryan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brendan Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Arthur L. Beaudet

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Harsha K. Garg

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley C. Torregrossa

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Benjamin Mull

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gabriele Toietta

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John R. Rodgers

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lucio Pastore

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge