Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan S. Bryan is active.

Publication


Featured researches published by Nathan S. Bryan.


Free Radical Biology and Medicine | 2003

Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals

Petra Kleinbongard; Andre Dejam; Thomas Lauer; Tienush Rassaf; A.W. Schindler; O. Picker; Thomas Scheeren; Axel Gödecke; Jürgen Schrader; Rainer Schulz; Gerd Heusch; Günter A. Schaub; Nathan S. Bryan; Martin Feelisch; Malte Kelm

Changes in plasma nitrite concentration in the human forearm circulation have recently been shown to reflect acute changes in endothelial nitric oxide synthase (eNOS)-activity. Whether basal plasma nitrite is a general marker of constitutive NOS-activity in vivo is yet unclear. Due to the rapid metabolism of nitrite in blood and the difficulties in its analytical determination literature data on levels of nitrite in mammals are largely inconsistent. We hypothesized that constitutive NOS-activity in the circulatory system is relatively uniform throughout the mammalian kingdom. If true, this should result in comparable systemic plasma nitrite levels in different species. Using three different analytical approaches we determined plasma nitrite concentration to be in a nanomolar range in a variety of species: humans (305 +/- 23 nmol/l), monkeys (367 +/- 62 nmol/l), minipigs (319 +/- 24 nmol/l), dogs (305 +/- 50 nmol/l), rabbits (502 +/- 21 nmol/l), guinea pigs (412 +/- 44 nmol/l), rats (191 +/- 43 nmol/l), and mice (457 +/- 51 nmol/l). Application of different NOS-inhibitors in humans, minipigs, and dogs decreased NOS-activity and thereby increased vascular resistance. This was accompanied by a significant, up to 80%, decrease in plasma nitrite concentration. A comparison of plasma nitrite concentrations between eNOS(-/-) and NOS-inhibited wild-type mice revealed that 70 +/- 5% of plasma nitrite is derived from eNOS. These results provide evidence for a uniform constitutive vascular NOS-activity across mammalian species.


The American Journal of Clinical Nutrition | 2009

Food sources of nitrates and nitrites: the physiologic context for potential health benefits

Norman G. Hord; Yaoping Tang; Nathan S. Bryan

The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organizations Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.


Nature Chemical Biology | 2009

Nitrate and nitrite in biology, nutrition and therapeutics

Jon O. Lundberg; Mark T. Gladwin; Amrita Ahluwalia; Nigel Benjamin; Nathan S. Bryan; Anthony R. Butler; Pedro Cabrales; Angela Fago; Martin Feelisch; Peter C. Ford; Bruce A. Freeman; Michael P. Frenneaux; Joel M. Friedman; Malte Kelm; Christopher G. Kevil; Daniel B. Kim-Shapiro; Andrey V. Kozlov; Jack R. Lancaster; David J. Lefer; Kenneth E.L. McColl; Kenneth R. McCurry; Rakesh P. Patel; Joel Petersson; Tienush Rassaf; V. P. Reutov; George B. Richter-Addo; Alan N. Schechter; Sruti Shiva; Koichiro Tsuchiya; Ernst E. van Faassen

Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Cellular targets and mechanisms of nitros(yl)ation: An insight into their nature and kinetics in vivo

Nathan S. Bryan; Tienush Rassaf; Ronald E. Maloney; Cynthia Rodriguez; Fumito Saijo; Juan Rodríguez; Martin Feelisch

There is mounting evidence that the established paradigm of nitric oxide (NO) biochemistry, from formation through NO synthases, over interaction with soluble guanylyl cyclase, to eventual disposal as nitrite/nitrate, represents only part of a richer chemistry through which NO elicits biological signaling. Additional pathways have been suggested that include interaction of NO-derived metabolites with thiols and metals to form S-nitrosothiols (RSNOs) and metal nitrosyls. Despite the overwhelming attention paid in this regard to RSNOs, little is known about the stability of these species, their significance outside the circulation, and whether other nitros(yl)ation products are of equal importance. We here show that N-nitrosation and heme-nitrosylation are indeed as ubiquitous as S-nitrosation in vivo and that the products of these reactions are constitutively present throughout the organ system. Our study further reveals that all NO-derived products are highly dynamic, have fairly short lifetimes, and are linked to tissue oxygenation and redox state. Experimental evidence further suggests that nitroso formation occurs substantially by means of oxidative nitrosylation rather than NO autoxidation, explaining why S-nitrosation can compete effectively with nitrosylation. Moreover, tissue nitrite can serve as a significant extravascular pool of NO during brief periods of hypoxia, and tissue nitrate/nitrite ratios can serve as indicators of the balance between local oxidative and nitrosative stress. These findings vastly expand our understanding of the fate of NO in vivo and provide a framework for further exploration of the significance of nitrosative events in redox sensing and signaling. The findings also raise the intriguing possibility that N-nitrosation is directly involved in the modulation of protein function.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury

Nathan S. Bryan; John W. Calvert; John W. Elrod; Susheel Gundewar; Sang Yong Ji; David J. Lefer

Nitrite has emerged as an endogenous signaling molecule with potential therapeutic implications for cardiovascular disease. Steady-state levels of nitrite are derived in part from dietary sources; therefore, we investigated the effects of dietary nitrite and nitrate supplementation and deficiency on NO homeostasis and on the severity of myocardial ischemia-reperfusion (MI/R) injury. Mice fed a standard diet with supplementation of nitrite (50 mg/liter) in their drinking water for 7 days exhibited significantly higher plasma levels of nitrite, exhibited significantly higher myocardial levels of nitrite, nitroso, and nitrosyl–heme, and displayed a 48% reduction in infarct size (Inf) after MI/R. Supplemental nitrate (1 g/liter) in the drinking water for 7 days also increased blood and tissue NO products and significantly reduced Inf. A time course of ischemia-reperfusion revealed that nitrite was consumed during the ischemic phase, with an increase in nitroso/nitrosyl products in the heart. Mice fed a diet deficient in nitrite and nitrate for 7 days exhibited significantly diminished plasma and heart levels of nitrite and NO metabolites and a 59% increase in Inf after MI/R. Supplementation of nitrite in the drinking water for 7 days reversed the effects of nitrite deficiency. These data demonstrate the significant influence of dietary nitrite and nitrate intake on the maintenance of steady-state tissue nitrite/nitroso levels and illustrate the consequences of nitrite deficiency on the pathophysiology of MI/R injury. Therefore, nitrite and nitrate may serve as essential nutrients for optimal cardiovascular health and may provide a treatment modality for cardiovascular disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans

Serpil C. Erzurum; S. Ghosh; Allison J. Janocha; W. Xu; S. Bauer; Nathan S. Bryan; Jesús Tejero; Craig Hemann; Russ Hille; Dennis J. Stuehr; Martin Feelisch; Cynthia M. Beall

The low barometric pressure at high altitude causes lower arterial oxygen content among Tibetan highlanders, who maintain normal levels of oxygen use as indicated by basal and maximal oxygen consumption levels that are consistent with sea level predictions. This study tested the hypothesis that Tibetans resident at 4,200 m offset physiological hypoxia and achieve normal oxygen delivery by means of higher blood flow enabled by higher levels of bioactive forms of NO, the main endothelial factor regulating blood flow and vascular resistance. The natural experimental study design compared Tibetans at 4,200 m and U.S. residents at 206 m. Eighty-eight Tibetan and 50 U.S. resident volunteers (18–56 years of age, healthy, nonsmoking, nonhypertensive, not pregnant, with normal pulmonary function) participated. Forearm blood flow, an indicator of systemic blood flow, was measured noninvasively by using plethysmography at rest, after breathing supplemental oxygen, and after exercise. The Tibetans had more than double the forearm blood flow of low-altitude residents, resulting in greater than sea level oxygen delivery to tissues. In comparison to sea level controls, Tibetans had >10-fold-higher circulating concentrations of bioactive NO products, including plasma and red blood cell nitrate and nitroso proteins and plasma nitrite, but lower concentrations of iron nitrosyl complexes (HbFeIINO) in red blood cells. This suggests that NO production is increased and that metabolic pathways controlling formation of NO products are regulated differently among Tibetans. These findings shift attention from the traditional focus on pulmonary and hematological systems to vascular factors contributing to adaptation to high-altitude hypoxia.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions

Mahesh S. Joshi; T. Bruce Ferguson; Tae H. Han; Daniel R. Hyduke; James C. Liao; Tienush Rassaf; Nathan S. Bryan; Martin Feelisch; Jack R. Lancaster

Although irreversible reaction of NO with the oxyheme of hemoglobin (producing nitrate and methemoglobin) is extremely rapid, it has been proposed that, under normoxic conditions, NO binds preferentially to the minority deoxyheme to subsequently form S-nitrosohemoglobin (SNOHb). Thus, the primary reaction would be conservation, rather than consumption, of nitrogen oxide. Data supporting this conclusion were generated by using addition of a small volume of a concentrated aqueous solution of NO to a normoxic hemoglobin solution. Under these conditions, however, extremely rapid reactions can occur before mixing. We have thus compared bolus NO addition to NO generated homogeneously throughout solution by using NO donors, a more physiologically relevant condition. With bolus addition, multiple hemoglobin species are formed (as judged by visible spectroscopy) as well as both nitrite and nitrate. With donor, only nitrate and methemoglobin are formed, stoichiometric with the amount of NO liberated from the donor. Studies with increasing hemoglobin concentrations reveal that the nitrite-forming reaction (which may be NO autoxidation under these conditions) competes with reaction with hemoglobin. SNOHb formation is detectable with either bolus or donor; however, the amounts formed are much smaller than the amount of NO added (less than 1%). We conclude that the reaction of NO with hemoglobin under normoxic conditions results in consumption, rather than conservation, of NO.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Chemical nature of nitric oxide storage forms in rat vascular tissue

Juan Rodriguez; Ronald E. Maloney; Tienush Rassaf; Nathan S. Bryan; Martin Feelisch

Endothelial NO production results in local formation of adducts that may act as storage forms of NO. Because little is known about their chemical nature, concentrations, and possible role in vascular biology, we sought to characterize those species basally present in rat aorta, using two independent approaches. In the first approach, tissue homogenates were analyzed by using chemiluminescence- and ion-chromatography-based techniques that allow trace-level quantification of NO-related compounds in complex biological matrices. In the second approach, NO stores were characterized by their ability to release NO when illuminated with light and subsequently relax vascular smooth muscle (photorelaxation). The latter included a careful assessment of action spectra for photorelaxation, taking into account the light-scattering properties of the tissue and the storage depletion rates induced by exposure to controlled levels of light. Biochemical analyses revealed that aortic tissues contained 10 ± 1 μM nitrite, 42 ± 7 μM nitrate, 40 ± 6 nM S-nitroso, and 33 ± 6 nM N-nitroso compounds (n = 4–8). The functional data obtained suggest that the NO photolytically released in the tissue originated from species with photophysical properties similar to those reported for low-molecular-weight S-nitrosothiols, as well as from nitrite. The relative contribution of these potential NO stores to the extent of photorelaxation was consistent with their concentrations detected biochemically in vascular tissue when their photoactivity was taken into account. We conclude that intravascular nitroso species and nitrite both have the potential to release physiologically relevant quantities of NO independent of enzymatic control by NO synthase.


Journal of Biological Chemistry | 2008

Tissue processing of nitrite in hypoxia : an intricate interplay of nitric oxide-generating and -scavenging systems

Martin Feelisch; Bernadette O. Fernandez; Nathan S. Bryan; Maria Francisca Garcia-Saura; Selena Bauer; David R. Whitlock; Peter C. Ford; David R. Janero; Juan Rodriguez; Houman Ashrafian

Although nitrite (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}) and nitrate (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document}) have been considered traditionally inert byproducts of nitric oxide (NO) metabolism, recent studies indicate that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} represents an important source of NO for processes ranging from angiogenesis through hypoxic vasodilation to ischemic organ protection. Despite intense investigation, the mechanisms through which \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} exerts its physiological/pharmacological effects remain incompletely understood. We sought to systematically investigate the fate of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} in hypoxia from cellular uptake in vitro to tissue utilization in vivo using the Wistar rat as a mammalian model. We find that most tissues (except erythrocytes) produce free NO at rates that are maximal under hypoxia and that correlate robustly with each tissues capacity for mitochondrial oxygen consumption. By comparing the kinetics of NO release before and after ferricyanide addition in tissue homogenates to mathematical models of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} reduction/NO scavenging, we show that the amount of nitrosylated products formed greatly exceeds what can be accounted for by NO trapping. This difference suggests that such products are formed directly from \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}, without passing through the intermediacy of free NO. Inhibitor and subcellular fractionation studies indicate that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} reductase activity involves multiple redundant enzymatic systems (i.e. heme, iron-sulfur cluster, and molybdenum-based reductases) distributed throughout different cellular compartments and acting in concert to elicit NO signaling. These observations hint at conserved roles for the \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}-NO pool in cellular processes such as oxygen-sensing and oxygen-dependent modulation of intermediary metabolism.


Free Radical Biology and Medicine | 2002

Concomitant presence of N-nitroso and S-nitroso proteins in human plasma

Tienush Rassaf; Nathan S. Bryan; Malte Kelm; Martin Feelisch

Nitric oxide (NO)-mediated nitrosation reactions are involved in cell signaling and pathology. Recent efforts have focused on elucidating the role of S-nitrosothiols (RSNO) in different biological systems, including human plasma, where they are believed to represent a transport and buffer system that controls intercellular NO exchange. Although RSNOs have been implicated in cardiovascular disease processes, it is yet unclear what their true physiological concentration is, whether a change in plasma concentration is causally related to the underlying pathology or purely epiphenomenological, and to what extent other nitrosyl adducts may be formed under the same conditions. Therefore, using gas phase chemiluminescence and liquid chromatography we sought to quantify the basal plasma levels of NO-related metabolites in 18 healthy volunteers. We find that in addition to the oxidative products of NO metabolism, nitrite (0.20 +/- 0.02 micromol/l nitrite) and nitrate (14.4 +/- 1.7 micromol/l), on average human plasma contains an approximately 5-fold higher concentration of N-nitroso species (32.3 +/- 5.0 nmol/l) than RSNOs (7.2 +/- 1.1 nmol/l). Both N- and S-nitroso moieties appear to be associated with the albumin fraction. This is the first report on the constitutive presence of a high-molecular-weight N-nitroso compound in the human circulation, raising the question as to its origin and potential physiological role. Our findings may not only have important implications for the transport of NO in vivo, but also for cardiovascular disease diagnostics and the risk assessment of nitrosamine-related carcinogenesis in man.

Collaboration


Dive into the Nathan S. Bryan's collaboration.

Top Co-Authors

Avatar

Martin Feelisch

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Harsha K. Garg

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Tienush Rassaf

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Ashley C. Torregrossa

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hong Jiang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Seals

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Juan Rodriguez

Centenary College of Louisiana

View shared research outputs
Top Co-Authors

Avatar

Yaoping Tang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Asad Mian

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge