Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asaf Ilovitsh is active.

Publication


Featured researches published by Asaf Ilovitsh.


Optics Letters | 2015

Time multiplexing super resolution using a Barker-based array.

Asaf Ilovitsh; Eyal Preter; Nadav Levanon; Zeev Zalevsky

We propose the use of a new encoding mask in order to improve the performance of the conventional time multiplexing super resolution method. The resolution improvement is obtained using a 2D Barker-based array that is placed upon the object and shifted laterally. The Barker-based array is a 2D generalization of the standard 1D Barker code. The Barker-based array has stable autocorrelation sidelobes, making it ideal for the encoding process. A sequence of low resolution images are captured at different positions of the array, and are decoded properly using the same array. After removing the low resolution image from the resulting reconstruction, a high resolution image is established. The proposed method is presented analytically, demonstrated via numerical simulation, and validated by laboratory experiment.


Optics Express | 2015

Super resolved optical system for objects with finite sizes using circular gratings

Asaf Ilovitsh; Mico; Zeev Zalevsky

We present a real time all optical super resolution method for exceeding the diffraction limit of an imaging system which has a circular aperture. The resolution improvement is obtained using two fixed circular gratings which are placed in predetermined positions. The circular gratings generate synthetic circular duplications of the aperture, thus they are the proper choice for a circular aperture optical system. The method is applicable for both spatially coherent and incoherent illuminations, as well as for white light illumination. The resolution improvement is achieved by limiting the object field of view. The proposed method is presented analytically, demonstrated via numerical simulations, and validated by laboratory experiments.


Biomedical Optics Express | 2015

Superresolved labeling nanoscopy based on temporally flickering nanoparticles and the K-factor image deshadowing

Tali Ilovitsh; Yossef Danan; Asaf Ilovitsh; Amihai Meiri; Rinat Meir; Zeev Zalevsky

Localization microscopy provides valuable insights into cellular structures and is a rapidly developing field. The precision is mainly limited by additive noise and the requirement for single molecule imaging that dictates a low density of activated emitters in the field of view. In this paper we present a technique aimed for noise reduction and improved localization accuracy. The method has two steps; the first is the imaging of gold nanoparticles that labels targets of interest inside biological cells using a lock-in technique that enables the separation of the signal from the wide spread spectral noise. The second step is the application of the K-factor nonlinear image decomposition algorithm on the obtained image, which improves the localization accuracy that can reach 5nm and enables the localization of overlapping particles at minimal distances that are closer by 65% than conventional methods.


Optics Letters | 2015

Super-resolution using Barker-based array projected via spatial light modulator

Asaf Ilovitsh; Tali Ilovitsh; Eyal Preter; Nadav Levanon; Zeev Zalevsky

The use of a two-dimensional Barker-based array in the conventional time multiplexing super-resolution (TMSR) technique was recently presented [Opt. Lett.40, 163-165 (2015)OPLEDP0146-959210.1364/OL.40.000163]. It enables achieving a two-dimensional SR image using only a one-dimensional scan, by exploiting its unique auto-correlation property. In this Letter, we refine the method using a mismatched array for the decoding process. The cross-correlation between the Barker-based array and the mismatched array has a perfect peak-to-sidelobes ratio, making it ideal for the SR process. Also, we propose the projection of this array onto the object using a phase-only spatial light modulator. Projecting the array eliminates the need for printing it, mechanically shifting it, and having a direct contact with the object, which is not feasible in many imaging applications. 13 phase masks, which generate shifted Barker-based arrays, were designed using a revised Gerchberg-Saxton algorithm. A sequence of 13 low resolution images were captured using these phase masks, and were decoded using the mismatched arrays, resulting in a high-resolution image. The proposed mismatched array and the design process of the phase masks are presented, and the method is validated by a laboratory experiment.


Applied Optics | 2017

Superresolved nanoscopy using Brownian motion of fluorescently labeled gold nanoparticles

Tali Ilovitsh; Asaf Ilovitsh; Omer Wagner; Zeev Zalevsky

The fundamental limit set by the wavelength of light can be overcome using methods of superresolution localization microscopy. These methods require labeling of the sample with fluorescent molecules and are time consuming as repeated cycles of activation and photobleaching of the sample are required. Alternatively, we propose a simplified approach that is free from direct labeling with fluorescence molecules and does not require the repeated cycles of activation and photobleaching. The method uses fluorescently labeled gold nanoparticles in an aqueous solution that are distributed on top of the sample. The nanoparticles move in random Brownian motion and obscure different areas of the sample, while the scene is being imaged sequentially. By conducting the proper postprocessing, a superresolution image can be generated. The method is validated both by numerical simulations as well as by experimental data.


Optics Letters | 2016

Time multiplexing based extended depth of focus imaging

Asaf Ilovitsh; Zeev Zalevsky

We propose to utilize the time multiplexing super resolution method to extend the depth of focus of an imaging system. In standard time multiplexing, the super resolution is achieved by generating duplication of the optical transfer function in the spectrum domain, by the use of moving gratings. While this improves the spatial resolution, it does not increase the depth of focus. By changing the gratings frequency and, by that changing the duplication positions, it is possible to obtain an extended depth of focus. The proposed method is presented analytically, demonstrated via numerical simulations and validated by a laboratory experiment.


Optics Express | 2014

Optical realization of the radon transform

Tali Ilovitsh; Asaf Ilovitsh; John T. Sheridan; Zeev Zalevsky

This paper presents a novel optical system for the realization of the Radon transform in a single frame. The optical system is simple, fast and accurate and consists of a 4F system, where in the 2F plane a vortex like optical element is placed. This optical element performs the rotation of the object, which replaces the need for mechanically rotating it, as is done in other common optical realization techniques of the Radon transform. This optical element is realized using a spatial light modulator (SLM) and an amplitude slide. The obtained Radon transform is given in Cartesian coordinates, which can subsequently be transformed using a computer to a polar set. The proposed concept is supported mathematically, numerically and experimentally.


Applied Optics | 2012

Contour superresolved imaging of static ground targets using satellite platform

Asaf Ilovitsh; Shlomo Zach; Zeev Zalevsky

We propose a method for increasing the contour resolution of static ground targets and to overcome the diffraction limit of an optical system installed on top of a satellite. The resolution improvement is obtained by using a sequence of low-resolution images taken from different angles realized by the movement of the satellite platform. The superresolving process is obtained by the generation of relative movement between the inspected object and the a priori known high-resolution background. The relative movement is caused because the images are taken from different angles. The captured set of low-resolution images are decoded by the a priori known high-resolution background obtained from a set of reference images taken only once by a high-resolution camera. The proposed concept is demonstrated via Matlab simulation and laboratory experiments.


Scientific Reports | 2015

Three dimensional imaging of gold-nanoparticles tagged samples using phase retrieval with two focus planes

Tali Ilovitsh; Asaf Ilovitsh; Aryeh Weiss; Rinat Meir; Zeev Zalevsky

Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold-particle tagged samples using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is presented and validated both on simulated data as well as experimentally.


Journal of Modern Optics | 2013

Optical synthetic aperture radar

Asaf Ilovitsh; Shlomo Zach; Zeev Zalevsky

A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg–Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

Collaboration


Dive into the Asaf Ilovitsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josquin Foiret

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge