Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rinat Meir is active.

Publication


Featured researches published by Rinat Meir.


ACS Nano | 2015

Nanomedicine for Cancer Immunotherapy: Tracking Cancer-Specific T-Cells in Vivo with Gold Nanoparticles and CT Imaging

Rinat Meir; Katerina Shamalov; Oshra Betzer; Menachem Motiei; Miryam Horovitz-Fried; Ronen Yehuda; Aron Popovtzer; Rachela Popovtzer; Cyrille J. Cohen

Application of immune cell-based therapy in routine clinical practice is challenging due to the poorly understood mechanisms underlying success or failure of treatment. Development of accurate and quantitative imaging techniques for noninvasive cell tracking can provide essential knowledge for elucidating these mechanisms. We designed a novel method for longitudinal and quantitative in vivo cell tracking, based on the superior visualization abilities of classical X-ray computed tomography (CT), combined with state-of-the-art nanotechnology. Herein, T-cells were transduced to express a melanoma-specific T-cell receptor and then labeled with gold nanoparticles (GNPs) as a CT contrast agent. The GNP-labeled T-cells were injected intravenously to mice bearing human melanoma xenografts, and whole-body CT imaging allowed examination of the distribution, migration, and kinetics of T-cells. Using CT, we found that transduced T-cells accumulated at the tumor site, as opposed to nontransduced cells. Labeling with gold nanoparticles did not affect T-cell function, as demonstrated both in vitro, by cytokine release and proliferation assays, and in vivo, as tumor regression was observed. Moreover, to validate the accuracy and reliability of the proposed cell tracking technique, T-cells were labeled both with green fluorescent protein for fluorescence imaging, and with GNPs for CT imaging. A remarkable correlation in signal intensity at the tumor site was observed between the two imaging modalities, at all time points examined, providing evidence for the accuracy of our CT cell tracking abilities. This new method for cell tracking with CT offers a valuable tool for research, and more importantly for clinical applications, to study the fate of immune cells in cancer immunotherapy.


Scientific Reports | 2015

In-vitro Optimization of Nanoparticle-Cell Labeling Protocols for In-vivo Cell Tracking Applications.

Oshra Betzer; Rinat Meir; Tamar Dreifuss; Katerina Shamalov; Menachem Motiei; Amit Shwartz; Koby Baranes; Cyrille J. Cohen; Niva Shraga-Heled; Racheli Ofir; Gal Yadid; Rachela Popovtzer

Recent advances in theranostic nanomedicine can promote stem cell and immune cell-based therapy. Gold nanoparticles (GNPs) have been shown to be promising agents for in-vivo cell-tracking in cell-based therapy applications. Yet a crucial challenge is to develop a reliable protocol for cell upload with, on the one hand, sufficient nanoparticles to achieve maximum visibility of cells, while on the other hand, assuring minimal effect of particles on cell function and viability. Previous studies have demonstrated that the physicochemical parameters of GNPs have a critical impact on their efficient uptake by cells. In the current study we have examined possible variations in GNP uptake, resulting from different incubation period and concentrations in different cell-lines. We have found that GNPs effectively labeled three different cell-lines - stem, immune and cancer cells, with minimal impairment to cell viability and functionality. We further found that uptake efficiency of GNPs into cells stabilized after a short period of time, while GNP concentration had a significant impact on cellular uptake, revealing cell-dependent differences. Our results suggest that while heeding the slight variations within cell lines, modifying the loading time and concentration of GNPs, can promote cell visibility in various nanoparticle-dependent in-vivo cell tracking and imaging applications.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Design Principles for Noninvasive, Longitudinal and Quantitative Cell Tracking with Nanoparticle-Based CT Imaging.

Rinat Meir; Oshra Betzer; Menachem Motiei; Noam Kronfeld; Rachela Popovtzer

Contradictory results in clinical trials are preventing the advancement and implementation of cell-based therapy. To explain such results, there is a need to uncover the mystery regarding the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, displaying the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. Moreover, monitoring of cell functionality was demonstrated on a mouse model of Duchenne muscular dystrophy. This cell-tracking technology has the potential to become an essential tool in pre-clinical as well as clinical trials and to advance the future of cell therapy.


Scientific Reports | 2015

Cellular imaging using temporally flickering nanoparticles

Tali Ilovitsh; Yossef Danan; Rinat Meir; Amihai Meiri; Zeev Zalevsky

Utilizing the surface plasmon resonance effect in gold nanoparticles enables their use as contrast agents in a variety of applications for compound cellular imaging. However, most techniques suffer from poor signal to noise ratio (SNR) statistics due to high shot noise that is associated with low photon count in addition to high background noise. We demonstrate an effective way to improve the SNR, in particular when the inspected signal is indistinguishable in the given noisy environment. We excite the temporal flickering of the scattered light from gold nanoparticle that labels a biological sample. By preforming temporal spectral analysis of the received spatial image and by inspecting the proper spectral component corresponding to the modulation frequency, we separate the signal from the wide spread spectral noise (lock-in amplification).


Scientific Reports | 2015

Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles

Tali Ilovitsh; Yossef Danan; Rinat Meir; Amihai Meiri; Zeev Zalevsky

In this paper we present a technique aimed for simultaneous detection of multiple types of gold nanoparticles (GNPs) within a biological sample, using lock-in detection. We image the sample using a number of modulated laser beams that correspond to the number of GNP species that label a given sample. The final image where the GNPs are spatially separated is obtained computationally. The proposed method enables the simultaneous superresolved imaging of different areas of interest within biological sample and also the spatial separation of GNPs at sub-diffraction distances, making it a useful tool in the study of intracellular trafficking pathways in living cells.


ACS Nano | 2017

Fast Image-Guided Stratification Using Anti-Programmed Death Ligand 1 Gold Nanoparticles for Cancer Immunotherapy

Rinat Meir; Katerina Shamalov; Tamar Sadan; Menachem Motiei; Gur Yaari; Cyrille J. Cohen; Rachela Popovtzer

Cancer immunotherapy has made enormous progress in offering safer and more effective treatments for the disease. Specifically, programmed death ligand 1 antibody (αPDL1), designed to perform immune checkpoint blockade (ICB), is now considered a pillar in cancer immunotherapy. However, due to the complexity and heterogeneity of tumors, as well as the diversity in patient response, ICB therapy only has a 30% success rate, at most; moreover, the efficacy of ICB can be evaluated only two months after start of treatment. Therefore, early identification of potential responders and nonresponders to therapy, using noninvasive means, is crucial for improving treatment decisions. Here, we report a straightforward approach for fast, image-guided prediction of therapeutic response to ICB. In a colon cancer mouse model, we demonstrate that the combination of computed tomography imaging and gold nanoparticles conjugated to αPDL1 allowed prediction of therapeutic response, as early as 48 h after treatment. This was achieved by noninvasive measurement of nanoparticle accumulation levels within the tumors. Moreover, we show that the nanoparticles efficiently prevented tumor growth with only a fifth of the standard dosage of clinical care. This technology may be developed into a powerful tool for early and noninvasive patient stratification as responders or nonresponders.


Biomedical Optics Express | 2015

Superresolved labeling nanoscopy based on temporally flickering nanoparticles and the K-factor image deshadowing

Tali Ilovitsh; Yossef Danan; Asaf Ilovitsh; Amihai Meiri; Rinat Meir; Zeev Zalevsky

Localization microscopy provides valuable insights into cellular structures and is a rapidly developing field. The precision is mainly limited by additive noise and the requirement for single molecule imaging that dictates a low density of activated emitters in the field of view. In this paper we present a technique aimed for noise reduction and improved localization accuracy. The method has two steps; the first is the imaging of gold nanoparticles that labels targets of interest inside biological cells using a lock-in technique that enables the separation of the signal from the wide spread spectral noise. The second step is the application of the K-factor nonlinear image decomposition algorithm on the obtained image, which improves the localization accuracy that can reach 5nm and enables the localization of overlapping particles at minimal distances that are closer by 65% than conventional methods.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2018

Cell tracking using gold nanoparticles and computed tomography imaging

Rinat Meir; Rachela Popovtzer

Cell-based therapies utilize transplantation of living cells with therapeutic traits to alleviate numerous diseases and disorders. The use of such biological agents is an attractive alternative for diseases that existing medicine cannot effectively treat. Although very promising, translating cell therapy to the clinic has proven to be challenging, due to inconsistent results in preclinical and clinical studies. To examine the underlying cause for these inconsistencies, it is crucial to noninvasively monitor the accuracy of cell injection, and cell survival and migration patterns. The combination of classical imaging techniques with cellular contrast agents-mainly nanotechnological-based-has enabled significant developments in cell-tracking methodologies. One novel methodology, based on computed tomography (CT) as an imaging modality and gold nanoparticles (AuNPs) as contrast agents, has recently gained interest for its clinical applicability and cost-effectiveness. Studies have shown that AuNPs can be used to efficiently label a variety of cell types, including stem cells and immune cells, without damaging their therapeutic efficacy. Successful in vivo experiments have demonstrated noninvasive, quantitative and longitudinal cell tracking with high sensitivity. This concept has the potential to be used not only as a research tool, but in clinical settings as well. WIREs Nanomed Nanobiotechnol 2018, 10:e1480. doi: 10.1002/wnan.1480 This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Proceedings of SPIE | 2017

Gold nanoparticle-cell labeling methodology for tracking stem cells within the brain

Oshra Betzer; Rinat Meir; Menachem Motiei; Gal Yadid; Rachela Popovtzer

Cell therapy provides a promising approach for diseases and injuries that conventional therapies cannot cure effectively. Mesenchymal stem cells (MSCs) can be used as effective targeted therapy, as they exhibit homing capabilities to sites of injury and inflammation, exert anti-inflammatory effects, and can differentiate in order to regenerate damaged tissue. Despite the potential efficacy of cell therapy, applying cell-based therapy in clinical practice is very challenging; there is a need to uncover the mystery regarding the fate of the transplanted cells. Therefore, in this study, we developed a method for longitudinal and quantitative in vivo cell tracking, based on the superior visualization abilities of classical X-ray computed tomography (CT), and combined with gold nanoparticles as labeling agents. We applied this technique for non-invasive imaging of MSCs transplanted in a rat model for depression, a highly prevalent and disabling neuropsychiatric disorder lacking effective treatment. Our results, which demonstrate that cell migration could be detected as early as 24 hours and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression related brain regions. This research further reveals that cell therapy is a beneficial approach for treating neuropsychiatric disorders; Behavioral manifestations of core symptoms of depressive behavior, were significantly attenuated following treatment. We expect This CT-based technique to lead to a significant enhancement in cellular therapy both for basic research and clinical applications of brain pathologies.


Scientific Reports | 2015

Three dimensional imaging of gold-nanoparticles tagged samples using phase retrieval with two focus planes

Tali Ilovitsh; Asaf Ilovitsh; Aryeh Weiss; Rinat Meir; Zeev Zalevsky

Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold-particle tagged samples using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is presented and validated both on simulated data as well as experimentally.

Collaboration


Dive into the Rinat Meir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyrille J. Cohen

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge