Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asami Kondo is active.

Publication


Featured researches published by Asami Kondo.


Nature | 2015

Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy

Asami Kondo; Koorosh Shahpasand; Rebekah Mannix; Jianhua Qiu; Juliet A. Moncaster; Chun-Hau Chen; Yandan Yao; Yu-Min Lin; Jane A. Driver; Yan Sun; Shuo Wei; Manli Luo; Onder Albayram; Pengyu Huang; Alexander Rotenberg; Akihide Ryo; Lee E. Goldstein; Alvaro Pascual-Leone; Ann C. McKee; William P. Meehan; Xiao Zhen Zhou; Kun Ping Lu

Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy and Alzheimer’s disease, the defining pathologic features of which include tauopathy made of phosphorylated tau protein (P-tau). However, tauopathy has not been detected in the early stages after TBI, and how TBI leads to tauopathy is unknown. Here we find robust cis P-tau pathology after TBI in humans and mice. After TBI in mice and stress in vitro, neurons acutely produce cis P-tau, which disrupts axonal microtubule networks and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, which we term ‘cistauosis’, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis P-tau is a major early driver of disease after TBI and leads to tauopathy in chronic traumatic encephalopathy and Alzheimer’s disease. The cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimers disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.


Nature Medicine | 2015

Active Pin1 is a key target of all- trans retinoic acid in acute promyelocytic leukemia and breast cancer

Shuo Wei; Shingo Kozono; Lev Kats; Morris Nechama; Wenzong Li; Jlenia Guarnerio; Manli Luo; Mi Hyeon You; Yandan Yao; Asami Kondo; Hai Hu; Gunes Bozkurt; Nathan J. Moerke; Shugeng Cao; Markus Reschke; Chun Hau Chen; Eduardo M. Rego; Francesco Lo-Coco; Lewis C. Cantley; Tae Ho Lee; Hao Wu; Yan Zhang; Pier Paolo Pandolfi; Xiao Zhen Zhou; Kun Ping Lu

A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency for inhibiting Pin1 function in vivo. By using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)—a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but whose drug target remains elusive—inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the protein encoded by the fusion oncogene PML–RARA and treats APL in APL cell and animal models as well as in human patients. ATRA-induced Pin1 ablation also potently inhibits triple-negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors.


Journal of Gene Medicine | 2009

Adenovirus type 5 with modified hexons induces robust transgene‐specific immune responses in mice with pre‐existing immunity against adenovirus type 5

Shinya Abe; Kenji Okuda; Takehiro Ura; Asami Kondo; Atsushi Yoshida; Shinji Yoshizaki; Hiroyuki Mizuguchi; Dennis M. Klinman; Masaru Shimada

Adenovirus type 5 (Ad5) is widely used as a vehicle for vaccine delivery in the treatment of infectious disease and cancer. However, the efficacy of Ad5 vectors has been limited in humans because exposure to Ad5 infections results in most adults having neutralizing antibodies against Ad5. To overcome this limitation, the hexon epitope present in the fifth hypervariable region of Ad5 was modified.


Neurobiology of Disease | 2015

Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer's disease.

Chun Hau Chen; Wenzong Li; Rukhsana Sultana; Mi Hyeon You; Asami Kondo; Koorosh Shahpasand; Byeong Mo Kim; Man Li Luo; Morris Nechama; Yu Min Lin; Yandan Yao; Tae Ho Lee; Xiao Zhen Zhou; Aaron M. Swomley; D. Allan Butterfield; Yan Zhang; Kun Ping Lu

The unique proline isomerase Pin1 is pivotal for protecting against age-dependent neurodegeneration in Alzheimers disease (AD), with its inhibition providing a molecular link between tangle and plaque pathologies. Pin1 is oxidatively modified in human AD brains, but little is known about its regulatory mechanisms and pathological significance of such Pin1 modification. In this paper, our determination of crystal structures of oxidized Pin1 reveals a series of Pin1 oxidative modifications on Cys113 in a sequential fashion. Cys113 oxidization is further confirmed by generating antibodies specifically recognizing oxidized Cys113 of Pin1. Furthermore, Pin1 oxidation on Cys113 inactivates its catalytic activity in vitro, and Ala point substitution of Cys113 inactivates the ability of Pin1 to isomerize tau as well as to promote protein turnover of tau and APP. Moreover, redox regulation affects Pin1 subcellular localization and Pin1-mediated neuronal survival in response to hypoxia treatment. Importantly, Cys113-oxidized Pin1 is significantly increased in human AD brain comparing to age-matched controls. These results not only identify a novel Pin1 oxidation site to be the critical catalytic residue Cys113, but also provide a novel oxidative regulation mechanism for inhibiting Pin1 activity in AD. These results suggest that preventing Pin1 oxidization might help to reduce the risk of AD.


Journal of Biological Chemistry | 2011

A distinct role for Pin1 in the induction and maintenance of pluripotency

Mayuko Nishi; Hidenori Akutsu; Shinji Masui; Asami Kondo; Yoji Nagashima; Hirokazu Kimura; Kilian Perrem; Yasushi Shigeri; Masashi Toyoda; Akiko Okayama; Hisashi Hirano; Akihiro Umezawa; Naoki Yamamoto; Sam W. Lee; Akihide Ryo

The prominent characteristics of pluripotent stem cells are their unique capacity to self-renew and pluripotency. Although pluripotent stem cell proliferation is maintained by specific intracellular phosphorylation signaling events, it has not been well characterized how the resulting phosphorylated proteins are subsequently regulated. We here report that the peptidylprolyl isomerase Pin1 is indispensable for the self-renewal and maintenance of pluripotent stem cells via the regulation of phosphorylated Oct4 and other substrates. Pin1 expression was found to be up-regulated upon the induction of induced pluripotent stem (iPS) cells, and the forced expression of Pin1 with defined reprogramming factors was observed to further enhance the frequency of iPS cell generation. The inhibition of Pin1 activity significantly suppressed colony formation and induced the aberrant differentiation of human iPS cells as well as murine ES cells. We further found that Pin1 interacts with the phosphorylated Ser12-Pro motif of Oct4 and that this in turn facilitates the stability and transcriptional activity functions of Oct4. Our current findings thus uncover an atypical role for Pin1 as a putative regulator of the induction and maintenance of pluripotency via the control of phosphorylation signaling. These data suggest that the manipulation of Pin1 function could be a potential strategy for the stable induction and proliferation of human iPS cells.


Brain | 2018

Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model

Chad Tagge; Andrew Fisher; Olga Minaeva; Amanda Gaudreau-Balderrama; Juliet A. Moncaster; Xiao-lei Zhang; Mark Wojnarowicz; Noel Casey; Haiyan Lu; Olga N. Kokiko-Cochran; Sudad Saman; Maria Ericsson; Kristen D. Onos; Ronel Veksler; Vladimir V. Senatorov; Asami Kondo; Xiao Z. Zhou; Omid Miry; Linnea R. Vose; Katisha Gopaul; Chirag Upreti; Christopher J. Nowinski; Robert C. Cantu; Victor E. Alvarez; Audrey M. Hildebrandt; Erich S. Franz; Janusz Konrad; James Hamilton; Ning Hua; Yorghos Tripodis

The mechanisms underpinning concussion, traumatic brain injury (TBI) and chronic traumatic encephalopathy (CTE) are poorly understood. Using neuropathological analyses of brains from teenage athletes, a new mouse model of concussive impact injury, and computational simulations, Tagge et al. show that head injuries can induce TBI and early CTE pathologies independent of concussion.


Biochemical and Biophysical Research Communications | 2009

Efficient osteoblast differentiation from mouse bone marrow stromal cells with polylysin-modified adenovirus vectors.

Katsuhisa Tashiro; Asami Kondo; Kenji Kawabata; Haruna Sakurai; Fuminori Sakurai; Koichi Yamanishi; Takao Hayakawa; Hiroyuki Mizuguchi

Bone marrow stromal cells (BMSCs) are expected to be a source for tissue regeneration because they can differentiate into multiple cell types. Establishment of efficient gene transfer systems for BMSCs is essential for their application to regenerative medicine. In this study, we compared the transduction efficiency in mouse primary BMSCs by using fiber-modified adenovirus (Ad) vectors, and demonstrated that AdK7, which harbors a polylysin (K7) peptide in the C-terminus of the fiber knob, could efficiently express a transgene in BMSCs. Notably, AdK7 robustly drove transgene expression in more than 90% of the BMSCs at 3,000 vector particles/cell. Furthermore, we showed that in vitro and in vivo osteogenic potential of BMSCs was dramatically promoted by the transduction of Runx2 gene using AdK7. These results indicate that this transduction system could be a powerful tool for therapeutic applications based on BMSCs.


JAMA Neurology | 2016

Potential of the Antibody Against cis–Phosphorylated Tau in the Early Diagnosis, Treatment, and Prevention of Alzheimer Disease and Brain Injury

Kun Ping Lu; Asami Kondo; Onder Albayram; Megan K. Herbert; Hekun Liu; Xiao Zhen Zhou

Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) share a common neuropathologic signature-neurofibrillary tangles made of phosphorylated tau-but do not have the same pathogenesis or symptoms. Although whether traumatic brain injury (TBI) could cause AD has not been established, CTE is shown to be associated with TBI. Until recently, whether and how TBI leads to tau-mediated neurodegeneration was unknown. The unique prolyl isomerase Pin1 protects against the development of tau-mediated neurodegeneration in AD by converting the phosphorylated Thr231-Pro motif in tau (ptau) from the pathogenic cis conformation to the physiologic trans conformation, thereby restoring ptau function. The recent development of antibodies able to distinguish and eliminate both conformations specifically has led to the discovery of cis-ptau as a precursor of tau-induced pathologic change and an early driver of neurodegeneration that directly links TBI to CTE and possibly to AD. Within hours of TBI in mice or neuronal stress in vitro, neurons prominently produce cis-ptau, which causes and spreads cis-ptau pathologic changes, termed cistauosis. Cistauosis eventually leads to widespread tau-mediated neurodegeneration and brain atrophy. Cistauosis is effectively blocked by the cis-ptau antibody, which targets intracellular cis-ptau for proteasome-mediated degradation and prevents extracellular cis-ptau from spreading to other neurons. Treating TBI mice with cis-ptau antibody not only blocks early cistauosis but also prevents development and spreading of tau-mediated neurodegeneration and brain atrophy and restores brain histopathologic features and functional outcomes. Thus, cistauosis is a common early disease mechanism for AD, TBI, and CTE, and cis-ptau and its antibody may be useful for early diagnosis, treatment, and prevention of these devastating diseases.


Nature Communications | 2017

Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae

Onder Albayram; Asami Kondo; Rebekah Mannix; Colin Smith; Cheng-Yu Tsai; Chenyu Li; Megan K. Herbert; Jianhua Qiu; Michael C. Monuteaux; Jane A. Driver; Sandra C. Yan; William B. Gormley; Ava M. Puccio; David O. Okonkwo; Brandon P. Lucke-Wold; Julian E. Bailes; William P. Meehan; Mark L. Zeidel; Kun Ping Lu; Xiao Zhen Zhou

Traumatic brain injury (TBI) is characterized by acute neurological dysfunction and associated with the development of chronic traumatic encephalopathy (CTE) and Alzheimer’s disease. We previously showed that cis phosphorylated tau (cis P-tau), but not the trans form, contributes to tau pathology and functional impairment in an animal model of severe TBI. Here we found that in human samples obtained post TBI due to a variety of causes, cis P-tau is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury and clinical outcome. Using mouse models of severe or repetitive TBI, we showed that cis P-tau elimination with a specific neutralizing antibody administered immediately or at delayed time points after injury, attenuates the development of neuropathology and brain dysfunction during acute and chronic phases including CTE-like pathology and dysfunction after repetitive TBI. Thus, cis P-tau contributes to short-term and long-term sequelae after TBI, but is effectively neutralized by cis antibody treatment.Induction of the cis form of phosphorylated tau (cis P-tau) has previously been shown to occur in animal models of traumatic brain injury (TBI), and blocking this form of tau using antibody was beneficial in a rodent model of severe TBI. Here the authors show that cis P-tau induction is a feature of several different forms of TBI in humans, and that administration of cis P-tau targeting antibody to rodents reduces or delays pathological features of TBI.


Cell & Bioscience | 2016

Function and regulation of tau conformations in the development and treatment of traumatic brain injury and neurodegeneration

Onder Albayram; Megan K. Herbert; Asami Kondo; Cheng-Yu Tsai; Sean Baxley; Xiaolan Lian; Madison Hansen; Xiao Zhen Zhou; Kun Ping Lu

One of the two common hallmark lesions of Alzheimer’s disease (AD) brains is neurofibrillary tangles (NFTs), which are composed of hyperphosphorylated tau protein (p-tau). NFTs are also a defining feature of other neurodegenerative disorders and have recently been identified in the brains of patients suffering from chronic traumatic encephalopathy (CTE). However, NFTs are not normally observed in traumatic brain injury (TBI) until months or years after injury. This raises the question of whether NFTs are a cause or a consequence of long-term neurodegeneration following TBI. Two conformations of phosphorylated tau, cis p-tau and trans p-tau, which are regulated by the peptidyl-prolyl isomerase Pin1, have been previously identified. By generating a polyclonal and monoclonal antibody (Ab) pair capable of distinguishing between cis and trans isoforms of p-tau (cis p-tau and trans p-tau, respectively), cis p-tau was identified as a precursor of tau pathology and an early driver of neurodegeneration in AD, TBI and CTE. Histological studies shows the appearance of robust cis p-tau in the early stages of human mild cognitive impairment (MCI), AD and CTE brains, as well as after sport- and military-related TBI. Notably, cis p-tau appears within hours after closed head injury and long before other known pathogenic p-tau conformations including oligomers, pre-fibrillary tangles and NFTs. Importantly, cis p-tau monoclonal antibody treatment not only eliminates cis p-tau induction and tau pathology, but also restores many neuropathological and functional outcome in TBI mouse models. Thus, cis p-tau is an early driver of tau pathology in TBI and CTE and detection of cis p-tau in human bodily fluids could potentially provide new diagnostic and prognostic tools. Furthermore, humanization of the cis p-tau antibody could ultimately be developed as a new treatment for AD, TBI and CTE.

Collaboration


Dive into the Asami Kondo's collaboration.

Top Co-Authors

Avatar

Kun Ping Lu

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiao Zhen Zhou

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihide Ryo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chirag Upreti

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge