Chirag Upreti
New York Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chirag Upreti.
Science Translational Medicine | 2012
Lee E. Goldstein; Andrew Fisher; Chad Tagge; Xiao-lei Zhang; Libor Velíšek; John Sullivan; Chirag Upreti; Jonathan M. Kracht; Maria Ericsson; Mark Wojnarowicz; Cezar Goletiani; Giorgi Maglakelidze; Noel Casey; Juliet A. Moncaster; Olga Minaeva; Robert D. Moir; Christopher J. Nowinski; Robert A. Stern; Robert C. Cantu; James Geiling; Jan Krzysztof Blusztajn; Benjamin Wolozin; Tsuneya Ikezu; Thor D. Stein; Andrew E. Budson; Neil W. Kowall; David Chargin; Andre Sharon; Sudad Saman; Garth F. Hall
Blast exposure is associated with chronic traumatic encephalopathy, impaired neuronal function, and persistent cognitive deficits in blast-exposed military veterans and experimental animals. Blast Brain: An Invisible Injury Revealed Traumatic brain injury (TBI) is the “signature” injury of the conflicts in Afghanistan and Iraq and is associated with psychiatric symptoms and long-term cognitive disability. Recent estimates indicate that TBI may affect 20% of the 2.3 million U.S. servicemen and women deployed since 2001. Chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disorder reported in athletes with multiple concussions, shares clinical features with TBI in military personnel exposed to explosive blast. However, the connection between TBI and CTE has not been explored in depth. In a new study, Goldstein et al. investigate this connection in the first case series of postmortem brains from U.S. military veterans with blast exposure and/or concussive injury. They report evidence for CTE neuropathology in the military veteran brains that is similar to that observed in the brains of young amateur American football players and a professional wrestler. The investigators developed a mouse model of blast neurotrauma that mimics typical blast conditions associated with military blast injury and discovered that blast-exposed mice also demonstrate CTE neuropathology, including tau protein hyperphosphorylation, myelinated axonopathy, microvascular damage, chronic neuroinflammation, and neurodegeneration. Surprisingly, blast-exposed mice developed CTE neuropathology within 2 weeks after exposure to a single blast. In addition, the neuropathology was accompanied by functional deficits, including slowed axonal conduction, reduced activity-dependent long-term synaptic plasticity, and impaired spatial learning and memory that persisted for 1 month after exposure to a single blast. The investigators then showed that blast winds with velocities of more than 330 miles/hour—greater than the most intense wind gust ever recorded on earth—induced oscillating head acceleration of sufficient intensity to injure the brain. The researchers then demonstrated that blast-induced learning and memory deficits in the mice were reduced by immobilizing the head during blast exposure. These findings provide a direct connection between blast TBI and CTE and indicate a primary role for blast wind–induced head acceleration in blast-related neurotrauma and its aftermath. This study also validates a new blast neurotrauma mouse model that will be useful for developing new diagnostics, therapeutics, and rehabilitative strategies for treating blast-related TBI and CTE. Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.
The Journal of Neuroscience | 2013
Xiao-lei Zhang; Beatrice Pöschel; Christian Faul; Chirag Upreti; Patric K. Stanton; Peter Mundel
Dendritic spines are a major substrate of brain plasticity. Although many studies have focused on Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of spine dynamics and synaptic function in adult brain, much less is know about protein kinase A (PKA)-dependent regulation of spine shape dynamics during postnatal brain development. Synaptopodin is a dendritic spine associated modulator of actin dynamics and a substrate of PKA. Here we show that NMDA and cAMP-induced dendritic spine expansion is impaired in hippocampal slices from 15- and 21-d-old synaptopodin-deficient mice. We further show that synaptopodin is required for full expression of PKA-dependent hippocampal long-term potentiation in 15- and 21-d-old, but not adult, mice. PKA-induced cAMP response element-binding phosphorylation is normal in the hippocampus of synaptopodin-deficient mice, suggesting that synaptopodin functions independently of cAMP response element-binding. Our results identify synaptopodin as a substrate of PKA in hippocampal neurons and point to an essential role for synaptopodin in activity-dependent regulation of dendritic spine dynamics and synaptic plasticity in postnatal brain development.
Brain | 2018
Chad Tagge; Andrew Fisher; Olga Minaeva; Amanda Gaudreau-Balderrama; Juliet A. Moncaster; Xiao-lei Zhang; Mark Wojnarowicz; Noel Casey; Haiyan Lu; Olga N. Kokiko-Cochran; Sudad Saman; Maria Ericsson; Kristen D. Onos; Ronel Veksler; Vladimir V. Senatorov; Asami Kondo; Xiao Z. Zhou; Omid Miry; Linnea R. Vose; Katisha Gopaul; Chirag Upreti; Christopher J. Nowinski; Robert C. Cantu; Victor E. Alvarez; Audrey M. Hildebrandt; Erich S. Franz; Janusz Konrad; James Hamilton; Ning Hua; Yorghos Tripodis
The mechanisms underpinning concussion, traumatic brain injury (TBI) and chronic traumatic encephalopathy (CTE) are poorly understood. Using neuropathological analyses of brains from teenage athletes, a new mouse model of concussive impact injury, and computational simulations, Tagge et al. show that head injuries can induce TBI and early CTE pathologies independent of concussion.
Brain | 2012
Chirag Upreti; Rafael Otero; Carlos Partida; Frank Skinner; Ravi Thakker; Luis F. Pacheco; Zhen-yu Zhou; Giorgi Maglakelidze; Jana Velíšková; Libor Velíšek; Dwight Romanovicz; Theresa A. Jones; Patric K. Stanton; Emilio R. Garrido-Sanabria
In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1-2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies.
PLOS ONE | 2011
Xiao-lei Zhang; Chirag Upreti; Patric K. Stanton
Background Short-term presynaptic inhibition mediated by G protein-coupled receptors involves a direct interaction between G proteins and the vesicle release machinery. Recent studies implicate the C terminus of the vesicle-associated protein SNAP-25 as a molecular binding target of Gβγ that transiently reduces vesicular release. However, it is not known whether SNAP-25 is a target for molecular modifications expressing long-term changes in transmitter release probability. Methodology/Principal Findings This study utilized two-photon laser scanning microscopy for real-time imaging of action potential-evoked [Ca2+] increases, in single Schaffer collateral presynaptic release sites in in vitro hippocampal slices, plus simultaneous recording of Schaffer collateral-evoked synaptic potentials. We used electroporation to infuse small peptides through CA3 cell bodies into presynaptic Schaffer collateral terminals to selectively study the presynaptic effect of scavenging the G-protein Gβγ. We demonstrate here that the C terminus of SNAP-25 is necessary for expression of LTD, but not long-term potentiation (LTP), of synaptic strength. Using type A botulinum toxin (BoNT/A) to enzymatically cleave the 9 amino acid C-terminus of SNAP-25 eliminated the ability of low frequency synaptic stimulation to induce LTD, but not LTP, even if release probability was restored to pre-BoNT/A levels by elevating extracellular [Ca2+]. Presynaptic electroporation infusion of the 14-amino acid C-terminus of SNAP-25 (Ct-SNAP-25), to scavenge Gβγ, reduced both the transient presynaptic inhibition produced by the group II metabotropic glutamate receptor stimulation, and LTD. Furthermore, presynaptic infusion of mSIRK, a second, structurally distinct Gβγ scavenging peptide, also blocked the induction of LTD. While Gβγ binds directly to and inhibit voltage-dependent Ca2+ channels, imaging of presynaptic [Ca2+] with Mg-Green revealed that low-frequency stimulation only transiently reduced presynaptic Ca2+ influx, an effect not altered by infusion of Ct-SNAP-25. Conclusions/Significance The C-terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, is a binding target for Gβγ necessary for both transient transmitter-mediated presynaptic inhibition, and the induction of presynaptic LTD.
Journal of Neuroscience Research | 2012
Govindaiah Vinukonda; Furong Hu; Chirag Upreti; Zoltan Ungvari; Muhammad T. Zia; Patric K. Stanton; Praveen Ballabh
Mechanisms of brain injury in intraventricular hemorrhage (IVH) of premature infants are elusive, and no therapeutic strategy exists to prevent brain damage in these infants. Therefore, we developed an in vitro organotypic forebrain slice culture model to advance mechanistic studies and therapeutic developments for this disorder. We cultured forebrain slices from E29 rabbit pups and treated the cultured slices (CS) with moderate (50 μl) or large (100 μl) amounts of autologous blood to mimic moderate and severe IVH. Blood‐induced damage to CS was evaluated by propidium iodide staining, lactate dehydrogenase (LDH) levels, microglial density, neuronal degeneration, myelination, and gliosis over 2 weeks after the initiation of culture. CS were viable for at least 14 days in vitro (DIV). The application of blood induced significant neural cell degeneration. Degenerating cells were more abundant and LDH levels were elevated in a dose‐dependent manner in CS treated with 50 versus 100 μl of blood compared with untreated controls. Microglial density was higher in blood‐treated CS compared with controls at both 7 and 14 days posttreatment, and myelination was reduced and gliosis enhanced. Selective application of blood fractions revealed that CS treated with plasma displayed more hypomyelination and gliosis compared with erythrocyte‐treated slices. This study develops and characterizes a novel rabbit forebrain slice culture model of IVH that exhibits neuropatholgical changes similar to those in human infants with IVH. Importantly, plasma appears to induce greater white matter damage than erythrocytes in IVH,indicating plasma as a source of neurotoxic components.
Alzheimers & Dementia | 2017
Lee E. Goldstein; Olga Minaeva; Andrew Fisher; Chad Tagge; Juliet A. Moncaster; Amanda Gaudreau-Balderrama; Xiao-lei Zhang; Mark Wojnarowicz; Noel Casey; Haiyan Lu; Olga N. Kokiko-Cochran; Sudad Saman; Maria Ericsson; Kristen D. Onos; Ronel Veksler; Vlad Senatorov; Asami Kondo; Xiao Zhou; Omid Miry; Linnea R. Vose; Katisha Gopaul; Chirag Upreti; Christopher J. Nowinski; Robert C. Cantu; Victor E. Alvarez; Ning Hua; Yorghos Tripodis; Andrew T. Anderson; Gareth R. Howell; Daniela Kaufer
tauopathy in young athletes after impact head injury and an impact concussion mouse model 5 Chad A. Tagge,* Andrew M. Fisher,* Olga V. Minaeva,* Amanda GaudreauBalderrama, Juliet A. Moncaster, Xiao-Lei Zhang, Mark W. Wojnarowicz, Noel Casey, Haiyan Lu, Olga N. Kokiko-Cochran, Sudad Saman, Maria Ericsson, Kristen D. Onos, Ronel Veksler, Vladimir V. Senatorov, Jr, Asami Kondo, Xiao Z. Zhou, Omid Miry, Linnea R. Vose, Katisha R. Gopaul, Chirag Upreti, 10 Christopher J. Nowinski, Robert C. Cantu, Victor E. Alvarez, Audrey M. Hildebrandt, Erich S. Franz, Janusz Konrad, James A. Hamilton, Ning Hua, Yorghos Tripodis, Andrew T. Anderson, Gareth R. Howell, Daniela Kaufer, Garth F. Hall, Kun P. Lu, Richard M. Ransohoff,7,z Robin O. Cleveland, Neil W. Kowall, Thor D. Stein, Bruce T. Lamb, Bertrand R. Huber, 15 William C. Moss, Alon Friedman, Patric K. Stanton, Ann C. McKee, Lee E. Goldstein
Neuropharmacology | 2013
Chirag Upreti; Xiao-lei Zhang; Simon Alford; Patric K. Stanton
Alzheimers & Dementia | 2012
Lee E. Goldstein; Andrew Fisher; Chad Tagge; Xiao-lei Zhang; Libor Velíšek; John Sullivan; Chirag Upreti; Johnathan Kracht; Maria Ericsson; Mark Wojnarowicz; Cezar Goletiani; Giorgi Maglakelidze; Noel Casey; Juliet A. Moncaster; Olga Minaeva; Kerry Cormier; Caroline A. Kubilus; Robert D. Moir; Christopher J. Nowinski; Robert A. Stern; Robert C. Cantu; James Geiling; Jan Krzysztof Blusztajn; Benjamin Wolozin; Tsuneya Ikezu; Andrew E. Budson; Sudad Saman; Garth F. Hall; David Chargin; Andre Sharon
Alzheimers & Dementia | 2016
Lee E. Goldstein; Chad Tagge; Andrew Fisher; Olga Minaeva; Amanda Gaudreau; Xiao-lei Zhang; Chirag Upreti; Maria Ericsson; Mark Wojnarowicz; Noel Casey; Juliet A. Moncaster; Christopher J. Nowinski; Robert C. Cantu; Sudad Saman; Garth F. Hall; Victor E. Alvarez; Asami Kondo; Andy Anderson; Ronel Veksler; Kristen D. Onos; Haiyan Lu; Vlad Senatorov; Bertrand R. Huber; Thor D. Stein; Yorghos Tripodis; Daniela Kaufer; Kun Ping Lu; Robin O. Cleveland; Gareth R. Howell; Alon Friedman