Ashleen Shadeo
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ashleen Shadeo.
Breast Cancer Research | 2007
Anna L. Stratford; Golareh Habibi; Arezoo Astanehe; Helen Jiang; Kaiji Hu; Eugene Park; Ashleen Shadeo; Timon Ph Buys; Wan L. Lam; Trevor J. Pugh; Marco A. Marra; Torsten O. Nielsen; U. Klinge; Peter R. Mertens; Samuel Aparicio; Sandra E. Dunn
IntroductionBasal-like breast cancers (BLBCs) are very aggressive, and present serious clinical challenges as there are currently no targeted therapies available. We determined the regulatory role of Y-box binding protein-1 (YB-1) on epidermal growth factor receptor (EGFR) overexpression in BLBC, and the therapeutic potential of inhibiting EGFR. We pursued this in light of our recent work showing that YB-1 induces the expression of EGFR, a new BLBC marker.MethodsPrimary tumour tissues were evaluated for YB1 protein expression by immunostaining tissue microarrays, while copy number changes were assessed by comparative genomic hybridization (CGH). The ability of YB-1 to regulate EGFR was evaluated using luciferase reporter, chromatin immunoprecipitation (ChIP) and gel shift assays. The impact of Iressa on monolayer cell growth was measured using an ArrayScan VTI high-throughput analyser to count cell number, and colony formation in soft agar was used to measure anchorage-independent growth.ResultsYB-1 (27/37 or 73% of cases, P = 3.899 × 10-4) and EGFR (20/37 or 57.1% of cases, P = 9.206 × 10-12) are expressed in most cases of BLBC. However, they are not typically amplified in primary BLBC, suggesting overexpression owing to transcriptional activation. In support of this, we demonstrate that YB-1 promotes EGFR reporter activity. YB-1 specifically binds the EGFR promoter at two different YB-1-responsive elements (YREs) located at -940 and -968 using ChIP and gel shift assays in a manner that is dependent on the phosphorylation of S102 on YB-1. Inhibiting EGFR with Iressa suppressed the growth of SUM149 cells by ~40% in monolayer, independent of mutations in the receptor. More importantly anchorage-independent growth of BLBC cell lines was inhibited with combinations of Iressa and YB-1 suppression.ConclusionWe have identified for the first time a causal link for the expression of EGFR in BLBC through the induction by YB-1 where it binds specifically to two distinguished YREs. Finally, inhibition of EGFR in combination with suppression of YB-1 presents a potential opportunity for therapy in BLBC.
Breast Cancer Research | 2006
Ashleen Shadeo; Wan L. Lam
IntroductionBreast cancer is the most commonly diagnosed cancer in women worldwide and consequently has been extensively investigated in terms of histopathology, immunochemistry and familial history. Advances in genome-wide approaches have contributed to molecular classification with respect to genomic changes and their subsequent effects on gene expression. Cell lines have provided a renewable resource that is readily used as model systems for breast cancer cell biology. A thorough characterization of their genomes to identify regions of segmental DNA loss (potential tumor-suppressor-containing loci) and gain (potential oncogenic loci) would greatly facilitate the interpretation of biological data derived from such cells. In this study we characterized the genomes of seven of the most commonly used breast cancer model cell lines at unprecedented resolution using a newly developed whole-genome tiling path genomic DNA array.MethodsBreast cancer model cell lines MCF-7, BT-474, MDA-MB-231, T47D, SK-BR-3, UACC-893 and ZR-75-30 were investigated for genomic alterations with the submegabase-resolution tiling array (SMRT) array comparative genomic hybridization (CGH) platform. SMRT array CGH provides tiling coverage of the human genome permitting break-point detection at about 80 kilobases resolution. Two novel discrete alterations identified by array CGH were verified by fluorescence in situ hybridization.ResultsWhole-genome tiling path array CGH analysis identified novel high-level alterations and fine-mapped previously reported regions yielding candidate genes. In brief, 75 high-level gains and 48 losses were observed and their respective boundaries were documented. Complex alterations involving multiple levels of change were observed on chromosome arms 1p, 8q, 9p, 11q, 15q, 17q and 20q. Furthermore, alignment of whole-genome profiles enabled simultaneous assessment of copy number status of multiple components of the same biological pathway. Investigation of about 60 loci containing genes associated with the epidermal growth factor family (epidermal growth factor receptor, HER2, HER3 and HER4) revealed that all seven cell lines harbor copy number changes to multiple genes in these pathways.ConclusionThe intrinsic genetic differences between these cell lines will influence their biologic and pharmacologic response as an experimental model. Knowledge of segmental changes in these genomes deduced from our study will facilitate the interpretation of biological data derived from such cells.
Oncogene | 2009
M R Finkbeiner; Arezoo Astanehe; Karen To; Abbas Fotovati; Alastair H. Davies; Y Zhao; H Jiang; Anna L. Stratford; Ashleen Shadeo; C Boccaccio; P Comoglio; P R Mertens; P Eirew; A Raouf; Connie J. Eaves; Sandra E. Dunn
Basal-like breast cancers (BLBCs) are aggressive tumors with high relapse rates and poor survival. We recently reported that >70% of primary BLBCs express the oncogenic transcription/translation factor Y-box binding protein-1 (YB-1) and silencing it with small interfering RNAs (siRNAs) attenuates the growth of BLBC cell lines. To understand the basis of these earlier findings, we profiled YB-1:DNA complexes by chromatin immunoprecipitation (ChIP)-on-chip. Several tumor growth-promoting genes such as MET, CD44, CD49f, WNT and NOTCH family members were identified. In addition, YB-1 and MET are coordinately expressed in BLBC cell lines, as well as in normal human mammary progenitor cells. MET was confirmed to be a YB-1 target through traditional ChIP and gel-shift assays. More specifically, YB-1 binds to −1018 bp on the MET promoter. Silencing YB-1 with siRNA decreased MET promoter activity, transcripts, as well as protein levels and signaling. Conversely, expressing wild-type YB-1 or a constitutively active mutant YB-1 (D102) increased MET expression. Finally, silencing YB-1 or MET attenuated anchorage-independent growth of BLBC cell lines. Together, these findings implicate MET as a target of YB-1 that work in concert to promote BLBC growth.
Genes, Chromosomes and Cancer | 2006
Teresa L. Mastracci; Ashleen Shadeo; Sarah M. Colby; Alan B. Tuck; Frances P. O'Malley; Shelley B. Bull; Wan L. Lam; Irene L. Andrulis
The identification of genomic alterations occurring in neoplastic lesions provides insight into both lesion occurrence and disease progression. In this study, we used microarray comparative genomic hybridization (CGH) to investigate genetic changes in atypical lobular hyperplasia (ALH) and lobular carcinoma in situ (LCIS), as the presence of these lobular neoplastic lesions is an indicator of risk in the development of invasive breast cancer. DNA was extracted from microdissected archival breast tissue containing ALH or LCIS, lacking adjacent invasive carcinoma, and subjected to whole‐genome tiling path microarray‐CGH using the submegabase resolution tiling set (SMRT)‐array platform. Twelve ALH and 13 LCIS lesions were examined. Copy number alterations were identified using statistical criteria and validated with Real‐Time PCR and fluorescence in situ hybridization. From statistical analysis, a greater number of alterations were observed in ALH compared to LCIS. Alterations common to ALH include gain at 2p11.2 and loss at 7p11–p11.1 and 22q11.1. Alterations common to LCIS include gain at 20q13.13 and loss at 19q13.2–q13.31. In both ALH and LCIS, we observed loss of 16q21–q23.1, an altered region previously identified in lobular neoplasia and invasive carcinoma. The validation of select alterations reinforces the genomic signature. This study represents the first whole‐genome investigation of lobular neoplastic breast lesions using clinical archival specimens. The identified genomic signature includes copy number alterations not previously identified for lobular neoplasia. This genomic signature, common to ALH and LCIS, suggests a role for the acquisition of novel genomic alterations in the aberrant cellular proliferation that defines lobular neoplasia.
Oncogene | 2005
Leah M Prentice; Ashleen Shadeo; Valia S. Lestou; Melinda A. Miller; Ronald J deLeeuw; Nikita Makretsov; Dmitry Turbin; Lindsay Brown; Nicol Macpherson; Erika Yorida; Maggie Cheang; John Bentley; Stephen Chia; Torsten O. Nielsen; C. Blake Gilks; Wan L. Lam; David Huntsman
Rearrangements of the neuregulin (NRG1) gene have been implicated in breast carcinoma oncogenesis. To determine the frequency and clinical significance of NRG1 aberrations in clinical breast tumors, a breast cancer tissue microarray was screened for NRG1 aberrations by fluorescent in situ hybridization (FISH) using a two-color split-apart probe combination flanking the NRG1 gene. Rearrangements of NRG1 were identified in 17/382 cases by FISH, and bacterial artificial chromosome array comparative genomic hybridization was applied to five of these cases to further map the chromosome 8p abnormalities. In all five cases, there was a novel amplicon centromeric to NRG1 with a minimum common region of amplification encompassing two genes, SPFH2 and FLJ14299. Subsequent FISH analysis for the novel amplicon revealed that it was present in 63/262 cases. Abnormalities of NRG1 did not correlate with patient outcome, but the novel amplicon was associated with poor prognosis in univariate analysis, and in multivariate analysis was of prognostic significance independent of nodal status, tumor grade, estrogen receptor status, and human epidermal growth factor receptor (HER)2 overexpression. Of the two genes in the novel amplicon, expression of SPFH2 correlated most significantly with amplification. This amplicon may emerge as a result of breakpoints and chromosomal rearrangements within the NRG1 locus.
Oncogene | 2009
Arezoo Astanehe; M R Finkbeiner; Payman Hojabrpour; Karen To; Abbas Fotovati; Ashleen Shadeo; Anna L. Stratford; W L Lam; Isabelle M. Berquin; Vincent Duronio; Sandra E. Dunn
PIK3CA, which codes for the p110α catalytic subunit of phosphatidylinositol-3-kinase (PI3K), is implicated as an oncogene. Despite importance of PIK3CA in cancer, little is known about what drives up its expression in tumor cells. We recently characterized the PIK3CA promoter and reported that it is transcriptionally silenced by the tumor suppressor protein p53. In the present study, we demonstrate that PIK3CA can be induced by the oncogenic transcription factor Y-box binding protein-1 (YB-1). Three YB-1-responsive elements were identified on the PIK3CA promoter using chromatin immunoprecipitation and electrophoretic mobility shift assays. Interestingly, silencing YB-1 with siRNA in models of basal-like breast cancer decreased p110α protein levels regardless of whether PIK3CA was wild type, amplified or mutated. This decrease in p110α led to a reduction in PI3K activity and the downstream signaling primarily through p90 ribosomal S6 kinase and S6 ribosomal protein. Disruption in PIK3CA-dependent signaling suppressed cellular invasion correlative with loss of urokinase plasminogen activator (uPA). Similarly, silencing YB-1 suppressed invasion and uPA production however this was reversible through the introduction of constitutively active PIK3CA. In conclusion, YB-1 is the first reported oncogene to induce the expression of PIK3CA through transcriptional control of its promoter.
BMC Genomics | 2008
Ashleen Shadeo; Raj Chari; Kim M. Lonergan; Andrea L. Pusic; Dianne Miller; Tom Ehlen; Dirk van Niekerk; Jasenka Matisic; Rebecca Richards-Kortum; Michele Follen; Martial Guillaud; Wan L. Lam; Calum MacAulay
BackgroundThe highest rates of cervical cancer are found in developing countries. Frontline monitoring has reduced these rates in developed countries and present day screening programs primarily identify precancerous lesions termed cervical intraepithelial neoplasias (CIN). CIN lesions described as mild dysplasia (CIN I) are likely to spontaneously regress while CIN III lesions (severe dysplasia) are likely to progress if untreated. Thoughtful consideration of gene expression changes paralleling the progressive pre invasive neoplastic development will yield insight into the key casual events involved in cervical cancer development.ResultsIn this study, we have identified gene expression changes across 16 cervical cases (CIN I, CIN II, CIN III and normal cervical epithelium) using the unbiased long serial analysis of gene expression (L-SAGE) method. The 16 L-SAGE libraries were sequenced to the level of 2,481,387 tags, creating the largest SAGE data collection for cervical tissue worldwide. We have identified 222 genes differentially expressed between normal cervical tissue and CIN III. Many of these genes influence biological functions characteristic of cancer, such as cell death, cell growth/proliferation and cellular movement. Evaluation of these genes through network interactions identified multiple candidates that influence regulation of cellular transcription through chromatin remodelling (SMARCC1, NCOR1, MRFAP1 and MORF4L2). Further, these expression events are focused at the critical junction in disease development of moderate dysplasia (CIN II) indicating a role for chromatin remodelling as part of cervical cancer development.ConclusionWe have created a valuable publically available resource for the study of gene expression in precancerous cervical lesions. Our results indicate deregulation of the chromatin remodelling complex components and its influencing factors occur in the development of CIN lesions. The increase in SWI/SNF stabilizing molecule SMARCC1 and other novel genes has not been previously illustrated as events in the early stages of dysplasia development and thus not only provides novel candidate markers for screening but a biological function for targeting treatment.
BMC Genomics | 2007
Ashleen Shadeo; Raj Chari; Greg Vatcher; Jennifer Campbell; Kim M. Lonergan; Jasenka Matisic; Dirk van Niekerk; Thomas Ehlen; Dianne Miller; Michele Follen; Wan L. Lam; Calum MacAulay
BackgroundMore than half of the approximately 500,000 women diagnosed with cervical cancer worldwide each year will die from this disease. Investigation of genes expressed in precancer lesions compared to those expressed in normal cervical epithelium will yield insight into the early stages of disease. As such, establishing a baseline from which to compare to, is critical in elucidating the abnormal biology of disease. In this study we examine the normal cervical tissue transcriptome and investigate the similarities and differences in relation to CIN III by Long-SAGE (L-SAGE).ResultsWe have sequenced 691,390 tags from four L-SAGE libraries increasing the existing gene expression data on cervical tissue by 20 fold. One-hundred and eighteen unique tags were highly expressed in normal cervical tissue and 107 of them mapped to unique genes, most belong to the ribosomal, calcium-binding and keratinizing gene families. We assessed these genes for aberrant expression in CIN III and five genes showed altered expression. In addition, we have identified twelve unique HPV 16 SAGE tags in the CIN III libraries absent in the normal libraries.ConclusionEstablishing a baseline of gene expression in normal cervical tissue is key for identifying changes in cancer. We demonstrate the utility of this baseline data by identifying genes with aberrant expression in CIN III when compared to normal tissue.
Breast Cancer Research and Treatment | 2006
Cheryl M. Lewis; Brittney Shea Herbert; Dawei Bu; Shane Halloway; Adam W. Beck; Ashleen Shadeo; Cindy Zhang; Raheela Ashfaq; Jerry W. Shay; David M. Euhus
SummaryA novel human mammary epithelial cell line, HME348, was established from benign breast tissue from a 44-year-old germ-line BRCA2 mutation carrier with a history of stage 1 breast cancer. Mutation analysis showed that the patient had a known 6872del4 BRCA2 heterozygous mutation. The human mammary epithelial cells passaged in culture exhibited cellular replicative aging as evidenced by telomere shortening, lack of telomerase activity, and senescence. Ectopic expression of telomerase (hTERT) reconstituted telomerase activity in these cells and led to the immortalization of the cells. When grown on glass, the majority of immortalized HME348 cells expressed ESA and p63 with a small population also expressing EMA. In three-dimensional Matrigel® culture, HME348 cells formed complex branching acini structures that expressed luminal (EMA, CK18) and myoepithelial (p63, CALLA, CK14) markers. Three clones derived from this culture were also p63+/ESA+/EMA+/− on glass but formed similar acinar structures with both luminal and myoepithelial cell differentiation in Matrigel® confirming the mammary progenitor nature of these cells. Additionally, the experimentally immortalized HME348 cells formed acini in cleared mammary fat pads in vivo. As this is the first report establishing and characterizing a benign human mammary epithelial cell line derived from a BRCA2 patient without the use of viral oncogenes, these cells may be useful for the study of BRCA2 function in breast morphogenesis and carcinogenesis.
American Journal of Respiratory Cell and Molecular Biology | 2006
Kim M. Lonergan; Raj Chari; Ronald J. deLeeuw; Ashleen Shadeo; Bryan Chi; Ming-Sound Tsao; Steven J.M. Jones; Marco A. Marra; Victor Ling; Raymond T. Ng; Calum MacAulay; Stephen Lam; Wan L. Lam