Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley J. Bauer is active.

Publication


Featured researches published by Ashley J. Bauer.


Hypertension | 2013

Pravastatin Attenuates Hypertension, Oxidative Stress, and Angiogenic Imbalance in Rat Model of Placental Ischemia-Induced Hypertension

Ashley J. Bauer; Christopher T. Banek; Karen Needham; Haley Gillham; Susan Capoccia; Jean F. Regal; Jeffrey S. Gilbert

Preeclampsia is a pregnancy-specific condition characterized by an imbalance of circulating angiogenic factors and new-onset hypertension. Although current treatment options are limited, recent studies suggest that pravastatin may improve angiogenic profile and reduce blood pressure in preeclampsia. We hypothesized pravastatin would restore angiogenic balance and reduce mean arterial pressure (MAP) in rats with reduced utero-placental perfusion pressure (RUPP)-induced hypertension. Pravastatin was administered intraperitoneally (1 mg/kg per day) in RUPP (RUPP+P) and normal pregnant rats (NP+P) from day 14 to 19 of pregnancy. On day 19, MAP was measured via catheter, conceptus data were recorded, and tissues collected. MAP was increased (P<0.05) in RUPP compared with NP dams, and pravastatin ameliorated this difference. Pravastatin attenuated decreased fetal weight and plasma vascular endothelial growth factor and the RUPP-induced increased soluble fms-like tyrosine kinase-1 when compared with NP dams. Pravastatin treatment did not improve angiogenic potential in RUPP serum and decreased (P<0.05) endothelial tube formation in NP rats. RUPP rats presented with indices of oxidative stress, such as increased placental catalase activity and plasma thiobarbituric acid reactive substances along with decreased plasma total antioxidant capacity compared with NP controls, and pravastatin attenuated these effects. MAP, fetal weight, plasma vascular endothelial growth factor, and plasma soluble fms-like tyrosine kinase-1 were unchanged in NP+P compared with NP controls. The present data indicate that treatment with pravastatin attenuates oxidative stress and lowers MAP in placental ischemia-induced hypertension, but may have negative effects on circulating angiogenic potential during pregnancy. Further studies are needed to determine whether there are long-term deleterious effects on maternal or fetal health after pravastatin treatment during pregnancy-induced hypertension or preeclampsia.


Hypertension | 2012

Exercise Training Attenuates Placental Ischemia-Induced Hypertension and Angiogenic Imbalance in the Rat

Jeffrey S. Gilbert; Christopher T. Banek; Ashley J. Bauer; Anne Gingery; Karen Needham

An imbalance between proangiogenic (vascular endothelial growth factor) and antiangiogenic (soluble fms-like tyrosine kinase 1) factors plays an important role in hypertension associated with reduced uteroplacental perfusion (RUPP). Exercise has been shown to stimulate proangiogenic factors, such as vascular endothelial growth factor, in both the pregnant and nonpregnant state; thus, we hypothesized that exercise training would attenuate both angiogenic imbalance and hypertension attributed to RUPP. Four groups of animals were studied, RUPP and normal pregnant controls and normal pregnant and RUPP+exercise training. Exercise training attenuated RUPP-induced hypertension (P<0.05), decreased soluble fms-like tyrosine kinase 1 (P<0.05), increased VEGF (P<0.05), and elevated the soluble fms-like tyrosine kinase 1:vascular endothelial growth factor ratio. The positive effects of exercise on angiogenic balance in the RUPP rats were confirmed by restoration (P<0.05) of the RUPP-induced decrease in endothelial tube formation in human umbilical vascular endothelial cells treated with serum from each of the experimental groups. Placental prolyl hydroxylase 1 was increased (P<0.05) in RUPP+exercise training rats. Decreased trolox equivalent antioxidant capacity in the placenta, amniotic fluid, and kidney of the RUPP rats was reversed by exercise. RUPP-induced increase in renal thiobarbituric acid reactive species was attenuated by exercise. The present data show that exercise training before and during pregnancy attenuates placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress in the RUPP rat and reveals that increased prolyl hydroxylase 1 is associated with decreased soluble fms-like tyrosine kinase 1, thus revealing several potential pathways for exercise training to mitigate the effects of placental ischemia-induced hypertension. Lastly, the present study demonstrates that exercise training may be a useful approach to attenuate the development of placental ischemia-induced hypertension during pregnancy.


Molecular Immunology | 2013

Complement activation is critical for placental ischemia-induced hypertension in the rat

Kathryn E. Lillegard; Alex C. Johnson; Sarah J. Lojovich; Ashley J. Bauer; Henry Marsh; Jeffrey S. Gilbert; Jean F. Regal

Preeclampsia is a major obstetric problem defined by new-onset hypertension and proteinuria associated with compromised placental perfusion. Although activation of the complement system is increased in preeclampsia compared to normal pregnancy, it remains unclear whether excess complement activation is a cause or consequence of placental ischemia. Therefore, we hypothesized that complement activation is critical for placental ischemia-induced hypertension. We employed the reduced utero-placental perfusion pressure (RUPP) model of placental ischemia in the rat to induce hypertension in the third trimester and evaluated the effect of inhibiting complement activation with a soluble recombinant form of an endogenous complement regulator, human complement receptor 1 (sCR1; CDX-1135). On day 14 of a 21-day gestation, rats received either RUPP or Sham surgery and 15 mg/kg/day sCR1 or saline intravenously on days 14-18. Circulating complement component 3 decreased and complement activation product C3a increased in RUPP vs. Sham (p<0.05), indicating complement activation had occurred. Mean arterial pressure (MAP) measured on day 19 increased in RUPP vs. Sham rats (109.8±2.8 mmHg vs. 93.6±1.6 mmHg). Treatment with sCR1 significantly reduced elevated MAP in RUPP rats (98.4±3.6 mmHg, p<0.05) and reduced C3a production. Vascular endothelial growth factor (VEGF) decreased in RUPP compared to Sham rats, and the decrease in VEGF was not affected by sCR1 treatment. Thus, these studies have identified a mechanistic link between complement activation and the pregnancy complication of hypertension apart from free plasma VEGF and have identified complement inhibition as a potential treatment strategy for placental ischemia-induced hypertension in preeclampsia.


American Journal of Physiology-heart and Circulatory Physiology | 2013

AICAR administration ameliorates hypertension and angiogenic imbalance in a model of preeclampsia in the rat.

Christopher T. Banek; Ashley J. Bauer; Karen Needham; Hans C. Dreyer; Jeffrey S. Gilbert

Previous studies suggest restoration of angiogenic balance can lower blood pressure and improve vascular endothelium function in models of preeclampsia. Our laboratory has recently reported exercise training mitigates hypertension in an animal model of preeclampsia, but the mechanisms are unknown. AMP-activated protein kinase (AMPK) is stimulated during exercise and has been shown to increase expression of VEGF. Therefore, the purpose of this study was to determine whether AICAR (5-aminoimidazole-4-carboxamide-3-ribonucleoside), a potent AMPK stimulator, would increase circulating VEGF, improve angiogenic potential, decrease oxidative stress, and abrogate placental ischemia-induced hypertension. In rats, reduced uteroplacental perfusion pressure (RUPP) was induced on day 14 of gestation by introducing silver clips on the inferior abdominal aorta and ovarian arteries. AICAR was administered intraperitoneally (50 mg/kg b.i.d.) days 14-18, and blood pressure and tissues were collected on day 19. RUPP-induced hypertension was ameliorated (P < 0.05) with AICAR versus RUPP. AICAR increased (P < 0.05) plasma VEGF and decreased (P < 0.05) plasma soluble VEGF receptor-1 in the RUPP + AICAR versus RUPP. Antioxidant capacity was restored (P < 0.05) by AICAR in RUPP placenta. Renal and placental catalase activity was decreased (P < 0.05) in RUPP + AICAR versus RUPP. Angiogenic potential was increased (P < 0.05) in RUPP + AICAR versus RUPP. Fetal and placental weights were unaffected by AICAR. Placental AMPK phosphorylation was increased (P < 0.05) in RUPP + AICAR versus normal pregnant and RUPP. These findings suggest AICAR may be useful to mitigate angiogenic imbalance, renal, and placental oxidative stress and increase in blood pressure associated with RUPP hypertension. Furthermore, placental AMPK phosphorylation was observed only in the setting of ischemia.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Placental and vascular adaptations to exercise training before and during pregnancy in the rat

Jeffrey S. Gilbert; Christopher T. Banek; Ashley J. Bauer; Anne Gingery; Hans C. Dreyer

Although exercise during pregnancy is generally recommended and thought to be beneficial to mother and fetus, the nature of the adaptations to exercise during pregnancy and how they may be beneficial remain poorly understood. Recent studies suggest that exercise may stimulate expression of several cytoprotective and pro-angiogenic molecules such as heat shock proteins (HSP) and vascular endothelial growth factors (VEGF). We hypothesized that exercise training during pregnancy improves angiogenic balance, increases HSP expression, and improves endothelial function. Female rats were given access to an exercise wheel for 6 wk before and during pregnancy. On day 19 of pregnancy tissues were collected and snap frozen for later analysis. Western blots were performed in skeletal muscle and placenta. HSP 27 (3.7 ± 0.36 vs. 2.2 ± 0.38; P < 0.05), HSP 60 (2.2 ± 0.73 vs. 0.49 ± 0.08; P < 0.05), and HSP 90 (0.33 ± 0.09 vs. 0.11 ± 0.02; P < 0.05) were increased in the placentas of exercise-trained rats compared with sedentary controls. In addition, exercise training increased (P < 0.05) plasma free VEGF and augmented (P < 0.05) endothelium-dependent vascular relaxation compared with nonexercise control rats. The present data indicates chronic exercise training stimulates HSP expression in the placenta and that regular exercise training increases circulating VEGF in pregnant but not in nonpregnant rats. Although the present findings suggest that exercise before and during pregnancy may promote the expression of molecules that could attenuate placental and vascular dysfunction in complicated pregnancies, further studies are needed to determine the safety and effectiveness of exercise training as a therapeutic modality in pregnancy.


Journal of Pharmacology and Experimental Therapeutics | 2014

Differential Effects of Complement Activation Products C3a and C5a on Cardiovascular Function in Hypertensive Pregnant Rats

Kathryn E. Lillegard; Jonathan Opacich; Jenna M. Peterson; Ashley J. Bauer; Barbara J. Elmquist; Ronald R. Regal; Jeffrey S. Gilbert; Jean F. Regal

Early-onset pre-eclampsia is characterized by decreased placental perfusion, new-onset hypertension, angiogenic imbalance, and endothelial dysfunction associated with excessive activation of the innate immune complement system. Although our previous studies demonstrated that inhibition of complement activation attenuates placental ischemia–induced hypertension using the rat reduced uterine perfusion pressure (RUPP) model, the important product(s) of complement activation has yet to be identified. We hypothesized that antagonism of receptors for complement activation products C3a and C5a would improve vascular function and attenuate RUPP hypertension. On gestational day (GD) 14, rats underwent sham surgery or vascular clip placement on ovarian arteries and abdominal aorta (RUPP). Rats were treated once daily with the C5a receptor antagonist (C5aRA), PMX51 (acetyl-F-[Orn-P-(D-Cha)-WR]), the C3a receptor antagonist (C3aRA), SB290157 (N2-[(2,2-diphenylethoxy)acetyl]-l-arginine), or vehicle from GD 14–18. Both the C3aRA and C5aRA attenuated placental ischemia–induced hypertension without affecting the decreased fetal weight or decreased concentration of free circulating vascular endothelial growth factor (VEGF) also present in this model. The C5aRA, but not the C3aRA, attenuated placental ischemia–induced increase in heart rate and impaired endothelial-dependent relaxation. The C3aRA abrogated the acute pressor response to C3a peptide injection, but it also unexpectedly attenuated the placental ischemia–induced increase in C3a, suggesting nonreceptor-mediated effects. Overall, these results indicate that both C3a and C5a are important products of complement activation that mediate the hypertension regardless of the reduction in free plasma VEGF. The mechanism by which C3a contributes to placental ischemia–induced hypertension appears to be distinct from that of C5a, and management of pregnancy-induced hypertension is likely to require a broad anti-inflammatory approach.


PLOS ONE | 2015

Neutrophil Depletion Attenuates Placental Ischemia-Induced Hypertension in the Rat.

Jean F. Regal; Kathryn E. Lillegard; Ashley J. Bauer; Barbara J. Elmquist; Jeffrey S. Gilbert

Preeclampsia is characterized by reduced placental perfusion with placental ischemia and hypertension during pregnancy. Preeclamptic women also exhibit a heightened inflammatory state and greater number of neutrophils in the vasculature compared to normal pregnancy. Since neutrophils are associated with tissue injury and inflammation, we hypothesized that neutrophils are critical to placental ischemia-induced hypertension and fetal demise. Using the reduced uteroplacental perfusion pressure (RUPP) model of placental ischemia-induced hypertension in the rat, we determined the effect of neutrophil depletion on blood pressure and fetal resorptions. Neutrophils were depleted with repeated injections of polyclonal rabbit anti-rat polymorphonuclear leukocyte (PMN) antibody (antiPMN). Rats received either antiPMN or normal rabbit serum (Control) on 13.5, 15.5, 17.5, and 18.5 days post conception (dpc). On 14.5 dpc, rats underwent either Sham surgery or clip placement on ovarian arteries and abdominal aorta to reduce uterine perfusion pressure (RUPP). On 18.5 dpc, carotid arterial catheters were placed and mean arterial pressure (MAP) was measured on 19.5 dpc. Neutrophil-depleted rats had reduced circulating neutrophils from 14.5 to 19.5 dpc compared to Control, as well as decreased neutrophils in lung and placenta on 19.5 dpc. MAP increased in RUPP Control vs Sham Control rats, and neutrophil depletion attenuated this increase in MAP in RUPP rats without any effect on Sham rats. The RUPP-induced increase in fetal resorptions and complement activation product C3a were not affected by neutrophil depletion. Thus, these data are the first to indicate that neutrophils play an important role in RUPP hypertension and that cells of the innate immune system may significantly contribute to pregnancy-induced hypertension.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Timing of ischemic insult alters fetal growth trajectory, maternal angiogenic balance, and markers of renal oxidative stress in the pregnant rat

Christopher T. Banek; Ashley J. Bauer; Anne Gingery; Jeffrey S. Gilbert

Increased uterine artery resistance and angiogenic imbalance characterized by increased soluble fms-like tyrosine kinase-1 (sFlt-1) and decreased free vascular endothelial growth factor (VEGF) are often associated with placental insufficiency and preeclampsia but not synonymous with hypertension. We hypothesized chronic reductions in utero-placental perfusion (RUPP) for 5 days (d) during either mid- (d12-d17) or late (d14-d19) gestation would have disparate effects on plasma sFlt-1 and VEGF levels and blood pressure. Five days of chronic RUPP was achieved by placement of silver clips on the abdominal aorta and ovarian arteries on either gestational d12 or d14. Arterial pressure was increased (P < 0.05) in RUPP vs. normal pregnant (NP) in both d17 (10%) and d19 (25%) groups, respectively. Circulating free VEGF was decreased (P < 0.05) and sFlt-1:VEGF ratio increased (P < 0.05) after 5 days of RUPP ending on d19 but not d17 compared with NP controls. Angiogenic imbalance, measured by an endothelial tube formation assay, was present in the d19 RUPP but not the d17 RUPP compared with age-matched NP rats. Five days of RUPP from days 14 to 19 decreased fetal and placental weights 10% (P < 0.01) compared with d19 NP controls. After 5 days of RUPP, from days 12 to 17 of pregnancy, fetal weights were 21% lighter (P < 0.01) compared with d17 NP controls, but placental weight was unchanged. These findings suggest that the timing during which placental insufficiency occurs may play an important role in determining the extent of alterations in angiogenic balance, fetal growth restriction, and the severity of placental ischemia-induced hypertension.


Placenta | 2012

Circulating and utero-placental adaptations to chronic placental ischemia in the rat

Jeffrey S. Gilbert; Ashley J. Bauer; Anne Gingery; Christopher T. Banek; S. Chasson


Frontiers in Bioscience | 2012

The opposing roles of anti-angiogenic factors in cancer and preeclampsia.

Jeffrey S. Gilbert; Ashley J. Bauer; Sara A.B. Gilbert; Christopher T. Banek

Collaboration


Dive into the Ashley J. Bauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge