Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher T. Banek is active.

Publication


Featured researches published by Christopher T. Banek.


Organic Letters | 2010

Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in Situ from Iodobenzene and Oxone: Reaction Scope and Limitations

Aleksandra A. Zagulyaeva; Christopher T. Banek; Mekhman S. Yusubov; Viktor V. Zhdankin

Alkylcarboxamides can be converted to the respective amines by Hofmann rearrangement using hypervalent iodine species generated in situ from PhI and Oxone in aqueous acetonitrile. On the basis of this reaction, a convenient experimental procedure for the preparation of alkylcarbamates using Oxone as the oxidant in the presence of iodobenzene in methanol has been developed. An efficient method for direct conversion of substituted benzamides to the respective quinone derivatives by treatment with Oxone and iodobenzene in aqueous acetonitrile has also been found.


Hypertension | 2013

Pravastatin Attenuates Hypertension, Oxidative Stress, and Angiogenic Imbalance in Rat Model of Placental Ischemia-Induced Hypertension

Ashley J. Bauer; Christopher T. Banek; Karen Needham; Haley Gillham; Susan Capoccia; Jean F. Regal; Jeffrey S. Gilbert

Preeclampsia is a pregnancy-specific condition characterized by an imbalance of circulating angiogenic factors and new-onset hypertension. Although current treatment options are limited, recent studies suggest that pravastatin may improve angiogenic profile and reduce blood pressure in preeclampsia. We hypothesized pravastatin would restore angiogenic balance and reduce mean arterial pressure (MAP) in rats with reduced utero-placental perfusion pressure (RUPP)-induced hypertension. Pravastatin was administered intraperitoneally (1 mg/kg per day) in RUPP (RUPP+P) and normal pregnant rats (NP+P) from day 14 to 19 of pregnancy. On day 19, MAP was measured via catheter, conceptus data were recorded, and tissues collected. MAP was increased (P<0.05) in RUPP compared with NP dams, and pravastatin ameliorated this difference. Pravastatin attenuated decreased fetal weight and plasma vascular endothelial growth factor and the RUPP-induced increased soluble fms-like tyrosine kinase-1 when compared with NP dams. Pravastatin treatment did not improve angiogenic potential in RUPP serum and decreased (P<0.05) endothelial tube formation in NP rats. RUPP rats presented with indices of oxidative stress, such as increased placental catalase activity and plasma thiobarbituric acid reactive substances along with decreased plasma total antioxidant capacity compared with NP controls, and pravastatin attenuated these effects. MAP, fetal weight, plasma vascular endothelial growth factor, and plasma soluble fms-like tyrosine kinase-1 were unchanged in NP+P compared with NP controls. The present data indicate that treatment with pravastatin attenuates oxidative stress and lowers MAP in placental ischemia-induced hypertension, but may have negative effects on circulating angiogenic potential during pregnancy. Further studies are needed to determine whether there are long-term deleterious effects on maternal or fetal health after pravastatin treatment during pregnancy-induced hypertension or preeclampsia.


Hypertension | 2012

Exercise Training Attenuates Placental Ischemia-Induced Hypertension and Angiogenic Imbalance in the Rat

Jeffrey S. Gilbert; Christopher T. Banek; Ashley J. Bauer; Anne Gingery; Karen Needham

An imbalance between proangiogenic (vascular endothelial growth factor) and antiangiogenic (soluble fms-like tyrosine kinase 1) factors plays an important role in hypertension associated with reduced uteroplacental perfusion (RUPP). Exercise has been shown to stimulate proangiogenic factors, such as vascular endothelial growth factor, in both the pregnant and nonpregnant state; thus, we hypothesized that exercise training would attenuate both angiogenic imbalance and hypertension attributed to RUPP. Four groups of animals were studied, RUPP and normal pregnant controls and normal pregnant and RUPP+exercise training. Exercise training attenuated RUPP-induced hypertension (P<0.05), decreased soluble fms-like tyrosine kinase 1 (P<0.05), increased VEGF (P<0.05), and elevated the soluble fms-like tyrosine kinase 1:vascular endothelial growth factor ratio. The positive effects of exercise on angiogenic balance in the RUPP rats were confirmed by restoration (P<0.05) of the RUPP-induced decrease in endothelial tube formation in human umbilical vascular endothelial cells treated with serum from each of the experimental groups. Placental prolyl hydroxylase 1 was increased (P<0.05) in RUPP+exercise training rats. Decreased trolox equivalent antioxidant capacity in the placenta, amniotic fluid, and kidney of the RUPP rats was reversed by exercise. RUPP-induced increase in renal thiobarbituric acid reactive species was attenuated by exercise. The present data show that exercise training before and during pregnancy attenuates placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress in the RUPP rat and reveals that increased prolyl hydroxylase 1 is associated with decreased soluble fms-like tyrosine kinase 1, thus revealing several potential pathways for exercise training to mitigate the effects of placental ischemia-induced hypertension. Lastly, the present study demonstrates that exercise training may be a useful approach to attenuate the development of placental ischemia-induced hypertension during pregnancy.


Journal of Organic Chemistry | 2011

Preparation, X-ray structure, and reactivity of 2-iodylpyridines: recyclable hypervalent iodine(V) reagents.

Akira Yoshimura; Christopher T. Banek; Mekhman S. Yusubov; Victor N. Nemykin; Viktor V. Zhdankin

2-Iodylpyridine and four examples of 3-alkoxy-2-iodylpyridines were prepared by oxidation of the respective 2-iodopyridines with 3,3-dimethyldioxirane. Structures of 2-iodylpyridine, 2-iodyl-3-isopropoxypyridine, and 2-iodyl-3-propoxypyridine were established by single-crystal X-ray diffraction analysis. 2-Iodyl-3-propoxypyridine has moderate solubility in organic solvents (e.g., 1.1 mg/mL in acetonitrile) and can be used as a recyclable reagent for oxidation of sulfides and alcohols. The reduced form of this reagent, 2-iodo-3-propoxypyridine, can be effectively separated from the reaction mixture by treatment with diluted sulfuric acid and recovered from the acidic aqueous solution by adding aqueous sodium hydroxide.


American Journal of Physiology-heart and Circulatory Physiology | 2013

AICAR administration ameliorates hypertension and angiogenic imbalance in a model of preeclampsia in the rat.

Christopher T. Banek; Ashley J. Bauer; Karen Needham; Hans C. Dreyer; Jeffrey S. Gilbert

Previous studies suggest restoration of angiogenic balance can lower blood pressure and improve vascular endothelium function in models of preeclampsia. Our laboratory has recently reported exercise training mitigates hypertension in an animal model of preeclampsia, but the mechanisms are unknown. AMP-activated protein kinase (AMPK) is stimulated during exercise and has been shown to increase expression of VEGF. Therefore, the purpose of this study was to determine whether AICAR (5-aminoimidazole-4-carboxamide-3-ribonucleoside), a potent AMPK stimulator, would increase circulating VEGF, improve angiogenic potential, decrease oxidative stress, and abrogate placental ischemia-induced hypertension. In rats, reduced uteroplacental perfusion pressure (RUPP) was induced on day 14 of gestation by introducing silver clips on the inferior abdominal aorta and ovarian arteries. AICAR was administered intraperitoneally (50 mg/kg b.i.d.) days 14-18, and blood pressure and tissues were collected on day 19. RUPP-induced hypertension was ameliorated (P < 0.05) with AICAR versus RUPP. AICAR increased (P < 0.05) plasma VEGF and decreased (P < 0.05) plasma soluble VEGF receptor-1 in the RUPP + AICAR versus RUPP. Antioxidant capacity was restored (P < 0.05) by AICAR in RUPP placenta. Renal and placental catalase activity was decreased (P < 0.05) in RUPP + AICAR versus RUPP. Angiogenic potential was increased (P < 0.05) in RUPP + AICAR versus RUPP. Fetal and placental weights were unaffected by AICAR. Placental AMPK phosphorylation was increased (P < 0.05) in RUPP + AICAR versus normal pregnant and RUPP. These findings suggest AICAR may be useful to mitigate angiogenic imbalance, renal, and placental oxidative stress and increase in blood pressure associated with RUPP hypertension. Furthermore, placental AMPK phosphorylation was observed only in the setting of ischemia.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Placental and vascular adaptations to exercise training before and during pregnancy in the rat

Jeffrey S. Gilbert; Christopher T. Banek; Ashley J. Bauer; Anne Gingery; Hans C. Dreyer

Although exercise during pregnancy is generally recommended and thought to be beneficial to mother and fetus, the nature of the adaptations to exercise during pregnancy and how they may be beneficial remain poorly understood. Recent studies suggest that exercise may stimulate expression of several cytoprotective and pro-angiogenic molecules such as heat shock proteins (HSP) and vascular endothelial growth factors (VEGF). We hypothesized that exercise training during pregnancy improves angiogenic balance, increases HSP expression, and improves endothelial function. Female rats were given access to an exercise wheel for 6 wk before and during pregnancy. On day 19 of pregnancy tissues were collected and snap frozen for later analysis. Western blots were performed in skeletal muscle and placenta. HSP 27 (3.7 ± 0.36 vs. 2.2 ± 0.38; P < 0.05), HSP 60 (2.2 ± 0.73 vs. 0.49 ± 0.08; P < 0.05), and HSP 90 (0.33 ± 0.09 vs. 0.11 ± 0.02; P < 0.05) were increased in the placentas of exercise-trained rats compared with sedentary controls. In addition, exercise training increased (P < 0.05) plasma free VEGF and augmented (P < 0.05) endothelium-dependent vascular relaxation compared with nonexercise control rats. The present data indicates chronic exercise training stimulates HSP expression in the placenta and that regular exercise training increases circulating VEGF in pregnant but not in nonpregnant rats. Although the present findings suggest that exercise before and during pregnancy may promote the expression of molecules that could attenuate placental and vascular dysfunction in complicated pregnancies, further studies are needed to determine the safety and effectiveness of exercise training as a therapeutic modality in pregnancy.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Timing of ischemic insult alters fetal growth trajectory, maternal angiogenic balance, and markers of renal oxidative stress in the pregnant rat

Christopher T. Banek; Ashley J. Bauer; Anne Gingery; Jeffrey S. Gilbert

Increased uterine artery resistance and angiogenic imbalance characterized by increased soluble fms-like tyrosine kinase-1 (sFlt-1) and decreased free vascular endothelial growth factor (VEGF) are often associated with placental insufficiency and preeclampsia but not synonymous with hypertension. We hypothesized chronic reductions in utero-placental perfusion (RUPP) for 5 days (d) during either mid- (d12-d17) or late (d14-d19) gestation would have disparate effects on plasma sFlt-1 and VEGF levels and blood pressure. Five days of chronic RUPP was achieved by placement of silver clips on the abdominal aorta and ovarian arteries on either gestational d12 or d14. Arterial pressure was increased (P < 0.05) in RUPP vs. normal pregnant (NP) in both d17 (10%) and d19 (25%) groups, respectively. Circulating free VEGF was decreased (P < 0.05) and sFlt-1:VEGF ratio increased (P < 0.05) after 5 days of RUPP ending on d19 but not d17 compared with NP controls. Angiogenic imbalance, measured by an endothelial tube formation assay, was present in the d19 RUPP but not the d17 RUPP compared with age-matched NP rats. Five days of RUPP from days 14 to 19 decreased fetal and placental weights 10% (P < 0.01) compared with d19 NP controls. After 5 days of RUPP, from days 12 to 17 of pregnancy, fetal weights were 21% lighter (P < 0.01) compared with d17 NP controls, but placental weight was unchanged. These findings suggest that the timing during which placental insufficiency occurs may play an important role in determining the extent of alterations in angiogenic balance, fetal growth restriction, and the severity of placental ischemia-induced hypertension.


Hypertension | 2016

Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

Christopher T. Banek; Mark M. Knuepfer; Jason D. Foss; Jessica K. Fiege; Ninitha Asirvatham-Jeyaraj; Dusty Van Helden; Yoji Shimizu; John W. Osborn

Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague–Dawley rats (275–300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA–Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. # Novelty and Significance {#article-title-46}Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague–Dawley rats (275–300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA–Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension.


Hypertension | 2016

Resting Afferent Renal Nerve Discharge and Renal InflammationNovelty and Significance: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension

Christopher T. Banek; Mark M. Knuepfer; Jason D. Foss; Jessica K. Fiege; Ninitha Asirvatham-Jeyaraj; Dusty Van Helden; Yoji Shimizu; John W. Osborn

Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague–Dawley rats (275–300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA–Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. # Novelty and Significance {#article-title-46}Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague–Dawley rats (275–300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA–Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension.


Hypertension | 2016

Renal Denervation Normalizes Arterial Pressure With No Effect on Glucose Metabolism or Renal Inflammation in Obese Hypertensive Mice

Ninitha Asirvatham-Jeyaraj; Jessica K. Fiege; Ruijun Han; Jason D. Foss; Christopher T. Banek; Brandon J. Burbach; Maria Razzoli; Alessandro Bartolomucci; Yoji Shimizu; Angela Panoskaltsis-Mortari; John W. Osborn

Hypertension often occurs in concurrence with obesity and diabetes mellitus, commonly referred to as metabolic syndrome. Renal denervation (RDNx) lowers arterial pressure (AP) and improves glucose metabolism in drug-resistant hypertensive patients with high body mass index. In addition, RDNx has been shown to reduce renal inflammation in the mouse model of angiotensin II hypertension. The present study tested the hypothesis that RDNx reduces AP and renal inflammation and improves glucose metabolism in obesity-induced hypertension. Eight-week-old C57BL/6J mice were fed either a low-fat diet (10 kcal%) or a high-fat diet (45 kcal%) for 10 weeks. Body weight, food intake, fasting blood glucose, and glucose metabolism (glucose tolerance test) were measured. In a parallel study, radiotelemeters were implanted in mice for AP measurement. High fat–fed C57BL/6J mice exhibited an inflammatory and metabolic syndrome phenotype, including increased fat mass, increased AP, and hyperglycemia compared with low-fat diet mice. RDNx, but not Sham surgery, normalized AP in high-fat diet mice (115.8±1.5 mm Hg in sham versus 96.6±6.7 mm Hg in RDNx). RDNx had no significant effect on AP in low-fat diet mice. Also, RDNx had no significant effect on glucose metabolism or renal inflammation as measured by the number of CD8, CD4, and T helper cells or levels of inflammatory cytokines in the kidneys. These results indicate that although renal nerves play a role in obesity-induced hypertension, they do not contribute to impaired glucose metabolism or renal inflammation in this model.

Collaboration


Dive into the Christopher T. Banek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge