Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley M. Woodward is active.

Publication


Featured researches published by Ashley M. Woodward.


Journal of Cell Science | 2014

Molecular basis for MMP9 induction and disruption of epithelial cell–cell contacts by galectin-3

Jerome Mauris; Ashley M. Woodward; Zhiyi Cao; Noorjahan Panjwani; Pablo Argüeso

ABSTRACT Dynamic modulation of the physical contacts between neighboring cells is integral to epithelial processes such as tissue repair and cancer dissemination. Induction of matrix metalloproteinase (MMP) activity contributes to the disassembly of intercellular junctions and the degradation of the extracellular matrix, thus mitigating the physical constraint to cell movement. Using the cornea as a model, we show here that a carbohydrate-binding protein, galectin-3, promotes cell–cell detachment and redistribution of the tight junction protein occludin through its N-terminal polymerizing domain. Notably, we demonstrate that galectin-3 initiates cell–cell disassembly by inducing matrix metalloproteinase expression in a manner that is dependent on the interaction with and clustering of the matrix metalloproteinase inducer CD147 (also known as EMMPRIN and basigin) on the cell surface. Using galectin-3-knockout mice in an in vivo model of wound healing, we further show that increased synthesis of MMP9 at the leading edge of migrating epithelium is regulated by galectin-3. These findings establish a new galectin-3-mediated regulatory mechanism for induction of metalloproteinase expression and disruption of cell–cell contacts required for cell motility in migrating epithelia.


Journal of Virology | 2013

Binding of Transmembrane Mucins to Galectin-3 Limits Herpesvirus 1 Infection of Human Corneal Keratinocytes

Ashley M. Woodward; Jerome Mauris; Pablo Argüeso

ABSTRACT Epithelial cells lining mucosal surfaces impose multiple barriers to viral infection. At the ocular surface, the carbohydrate-binding protein galectin-3 maintains barrier function by cross-linking transmembrane mucins on the apical glycocalyx. Despite these defense mechanisms, many viruses have evolved to exploit fundamental cellular processes on host cells. Here, we use affinity assays to show that herpes simplex virus type 1 (HSV-1), but not HSV-2, binds human galectin-3. Knockdown of galectin-3 in human corneal keratinocytes by small interfering RNA significantly impaired HSV-1 infection, but not expression of nectin-1, indicating that galectin-3 is a herpesvirus entry mediator. Interestingly, exposure of epithelial cell cultures to transmembrane mucin isolates decreased viral infectivity. Moreover, HSV-1 failed to elute the biological counterreceptor MUC16 from galectin-3 affinity columns, suggesting that association of transmembrane mucins to galectin-3 provides protection against viral infection. Together, these results indicate that HSV-1 exploits galectin-3 to enhance virus attachment to host cells and support a protective role for transmembrane mucins under physiological conditions by masking viral entry mediators on the epithelial glycocalyx.


PLOS ONE | 2013

Modulation of Ocular Surface Glycocalyx Barrier Function by a Galectin-3 N-terminal Deletion Mutant and Membrane-Anchored Synthetic Glycopolymers

Jerome Mauris; Flavio Mantelli; Ashley M. Woodward; Ziyhi Cao; Carolyn R. Bertozzi; Noorjahan Panjwani; Kamil Godula; Pablo Argüeso

Background Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. Methodology/Principal Findings Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. Conclusions/Significance These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.


Investigative Ophthalmology & Visual Science | 2014

Expression analysis of the transmembrane mucin MUC20 in human corneal and conjunctival epithelia.

Ashley M. Woodward; Pablo Argüeso

PURPOSE Cell surface mucins are a group of highly O-glycosylated transmembrane glycoproteins responsible for the protection of epithelial cells on mucosal surfaces. The aim of this study was to investigate the localization and regulation of mucin 20 (MUC20) at the ocular surface. METHODS Localization of MUC20 in human corneal and conjunctival epithelia was evaluated by immunofluorescence microscopy. Immortalized corneal (HCLE) and conjunctival (HCjE) cell lines were grown at different stages of differentiation and subjected to quantitative PCR and Western blot analyses. Cell surface proteins on apical cell membranes were biotinylated and isolated by neutravidin chromatography. RESULTS The MUC20 was detected throughout the entire human ocular surface epithelia, predominantly in cell membranes within intermediate cell layers. In conjunctiva, MUC20 also was observed in the cytoplasm of apical cells within the stratified squamous epithelium, but not in goblet cells. Quantitative PCR and immunoblotting demonstrated expression of MUC20 in HCLE and HCjE cells. Induction of differentiation with serum-containing medium resulted in upregulation of MUC20 mRNA and protein. Biotin labeling of the surface of stratified cultures revealed low levels of MUC20 protein on apical glycocalyces. Further, MUC20 was not detected in the cell culture media or in human tears, suggesting that the extracellular domain of MUC20 is not released from the ocular surface as described previously for other cell surface mucins. CONCLUSIONS Our results indicate that MUC20 is a novel transmembrane mucin expressed by the human corneal and conjunctival epithelia, and suggest that differential expression of MUC20 during differentiation has a role in maintaining ocular surface homeostasis.


Investigative Ophthalmology & Visual Science | 2011

Notch Signaling Modulates MUC16 Biosynthesis in an In Vitro Model of Human Corneal and Conjunctival Epithelial Cell Differentiation

Linjie Xiong; Ashley M. Woodward; Pablo Argüeso

PURPOSE Notch proteins are a family of transmembrane receptors that coordinate binary cell fate decisions and differentiation in wet-surfaced epithelia. We sought to determine whether Notch signaling contributes to maintaining mucosal homeostasis by modulating the biosynthesis of cell surface-associated mucins in an in vitro model of human corneal (HCLE) and conjunctival (HCjE) epithelial cell differentiation. METHODS HCLE and HCjE cells were grown at different stages of differentiation, representing nondifferentiated (preconfluent and confluent) and differentiated (stratified) epithelial cultures. Notch signaling was blocked with the γ-secretase inhibitor dibenzazepine (DBZ). The presence of Notch intracellular domains (Notch1 to Notch3) and mucin protein (MUC1, -4, -16) was evaluated by electrophoresis and Western blot analysis. Mucin gene expression was determined by TaqMan real-time polymerase chain reaction. RESULTS Here we demonstrate that Notch3 is highly expressed in undifferentiated and differentiated HCLE and HCjE cells, and that Notch1 and Notch2 biosynthesis is enhanced by induction of differentiation with serum-containing media. Inhibition of Notch signaling with DBZ impaired MUC16 biosynthesis in a concentration-dependent manner in undifferentiated cells at both preconfluent and confluent stages, but not in postmitotic stratified cells. In contrast to protein levels, the amount of MUC16 transcripts were not significantly reduced after DBZ treatment, suggesting that Notch regulates MUC16 posttranscriptionally. Immunoblots of DBZ-treated epithelial cells grown at different stages of differentiation revealed no differences in the levels of MUC1 and MUC4. CONCLUSIONS These results indicate that MUC16 biosynthesis is posttranscriptionally regulated by Notch signaling at early stages of epithelial cell differentiation, and suggest that Notch activation contributes to maintaining a mucosal phenotype at the ocular surface.


PLOS ONE | 2012

Targeted Disruption of Core 1 β1,3-galactosyltransferase (C1galt1) Induces Apical Endocytic Trafficking in Human Corneal Keratinocytes

Ana Guzman-Aranguez; Ashley M. Woodward; Jesús Pintor; Pablo Argüeso

Background Exposed mucosal surfaces limit constitutive endocytosis under physiological conditions to prevent uptake of macromolecules and pathogens and, therefore, cellular damage. It is now accepted that cell surface mucins, a group of high molecular weight glycoproteins on the epithelial glycocalyx, defined by their extensive O-glycosylation, play a major role in maintaining barrier function in these surfaces, but the precise mechanisms are unclear. Methodology/Principal Findings In this work, we utilized a stable tetracycline-inducible RNA interfering system targeting the core 1 ß1,3-galactosyltransferase (C1galt1 or T-synthase), a critical galactosyltransferase required for the synthesis of core 1 O-glycans, to explore the role of mucin-type carbohydrates in apical endocytic trafficking in human corneal keratinocytes. Using cell surface biotinylation and subcellular fractionation, we found increased accumulation of plasma membrane protein in endosomes after C1galt1 depletion. Confocal laser scanning microscopy and fluorometry revealed increased translocation of negatively charged fluorescent nanospheres after C1galt1 knockdown sustained by an active transport process and largely independent of apical intercellular junctions. Internalization of nanospheres could be blocked by dynasore, nocodazole, chlorpromazine, and hyperosmotic sucrose, suggesting a mechanism for clathrin-coated pit budding and vesicular trafficking. This possibility was supported by experiments showing nanosphere colocalization with clathrin heavy chain in the cytoplasm. Conclusions/Significance Together, the data suggest that core 1 O-glycans contribute to maintenance of apical barrier function on exposed mucosal surfaces by preventing clathrin-mediated endocytosis.


Journal of Biological Chemistry | 2017

N-Glycosylation affects the stability and barrier function of the MUC16 mucin

Takazumi Taniguchi; Ashley M. Woodward; Paula Magnelli; Nicole M. McColgan; Sylvain Lehoux; Sarah Melissa P. Jacobo; Jerome Mauris; Pablo Argüeso

Transmembrane mucins are highly O-glycosylated glycoproteins that coat the apical glycocalyx on mucosal surfaces and represent the first line of cellular defense against infection and injury. Relatively low levels of N-glycans are found on transmembrane mucins, and their structure and function remain poorly characterized. We previously reported that carbohydrate-dependent interactions of transmembrane mucins with galectin-3 contribute to maintenance of the epithelial barrier at the ocular surface. Now, using MALDI-TOF mass spectrometry, we report that transmembrane mucin N-glycans in differentiated human corneal epithelial cells contain primarily complex-type structures with N-acetyllactosamine, a preferred galectin ligand. In N-glycosylation inhibition experiments, we find that treatment with tunicamycin and siRNA-mediated knockdown of the Golgi N-acetylglucosaminyltransferase I gene (MGAT1) induce partial loss of both total and cell-surface levels of the largest mucin, MUC16, and a concomitant reduction in glycocalyx barrier function. Moreover, we identified a distinct role for N-glycans in promoting MUC16s binding affinity toward galectin-3 and in causing retention of the lectin on the epithelial cell surface. Taken together, these studies define a role for N-linked oligosaccharides in supporting the stability and function of transmembrane mucins on mucosal surfaces.


Biochemical and Biophysical Research Communications | 2012

Characterization of the interaction between hydroxypropyl guar galactomannan and galectin-3.

Ashley M. Woodward; Michelle Senchyna; Ravaughn Williams; Pablo Argüeso

Multivalent galactose ligands have been proposed for selective targeting of carbohydrate-binding proteins on epithelial cell surfaces, both in normal and pathological conditions. One cellular partner is galectin-3, a β-galactoside-binding protein present on many epithelial linings, such as those of the ocular surface. In this study, we investigated the ability of hydroxypropyl guar galactomannan (HPGG) to bind recombinant galectin-3 and to target the apical surface of differentiated human corneal keratinocytes. Pull-down and slot-blot assays demonstrated that fluorescence-labeled HPGG bound recombinant galectin-3 through a galactose-dependent mechanism. In contrast, no binding of HPGG could be detected towards recombinant galectin-8 or -9. In a cell culture system, HPGG bound weakly to biotinylated cell surface corneal isolates containing endogenous galectin-3, and incubation of HPGG with corneal keratinocytes in culture resulted in discrete, galactose-independent, binding to the cell surface. Moreover, HPGG failed to elute the biological counter-receptor MUC16 from galectin-3 affinity columns. We conclude that HPGG binds galectin-3 through the conventional carbohydrate-recognition domain in vitro, but not in a biological system, suggesting that endogenous carbohydrate ligands on epithelial cell surface glycocalyces impair HPGG biorecognition.


Experimental Eye Research | 2012

Differential contribution of hypertonic electrolytes to corneal epithelial dysfunction

Ashley M. Woodward; Michelle Senchyna; Pablo Argüeso

The surface of the eye is covered by a protective tear film consisting of an aqueous-mucus layer and a superficial lipid layer, which are vital for light refraction and protection of vision. The aqueous component of the tear film contains electrolytes and a large variety of proteins, peptides and glycoproteins secreted by the lacrimal and meibomian glands, and apical cells of the corneal and conjunctival epithelia (Ohashi, Y. et al., 2006; Ruiz-Ederra, J. et al., 2009). Maintenance of a precise osmotic gradient of electrolytes between the tear film and the ocular surface epithelia is of paramount importance in regulating cell function and homeostasis. An imbalance of electrolytes is a hallmark of many pathologies, including dry eye, a disease affecting between 6 and 43 million people in the United States alone (Gilbard, J.P., 1994; Pflugfelder, S.C., 2011).


Experimental Eye Research | 2016

Differential effect of rebamipide on transmembrane mucin biosynthesis in stratified ocular surface epithelial cells

Yuichi Uchino; Ashley M. Woodward; Pablo Argüeso

Mucins are a group of highly glycosylated glycoproteins responsible for the protection of wet-surfaced epithelia. Recent data indicate that transmembrane mucins differ in their contribution to the protective function of the ocular surface, with MUC16 being the most effective barrier on the apical surface glycocalyx. Here, we investigated the role of the mucoprotective drug rebamipide in the regulation of transmembrane mucin biosynthesis using stratified cultures of human corneal and conjunctival epithelial cells. We find that the addition of rebamipide to corneal, but not conjunctival, epithelial cells increased MUC16 protein biosynthesis. Rebamipide did not affect the levels of MUC1, 4 and 20 compared to control. In these experiments, rebamipide had no effect on the expression levels of Notch intracellular domains, suggesting that the rebamipide-induced increase in MUC16 biosynthesis in differentiated corneal cultures is not regulated by Notch signaling. Overall these findings indicate that rebamipide induces the differential upregulation of MUC16 in stratified cultures of human corneal epithelial cells, which may have implications to the proper restoration of barrier function in ocular surface disease.

Collaboration


Dive into the Ashley M. Woodward's collaboration.

Top Co-Authors

Avatar

Pablo Argüeso

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Jerome Mauris

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flavio Mantelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francisco Amparo

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reza Dana

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Dieckow

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge