Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Dieckow is active.

Publication


Featured researches published by Julia Dieckow.


Investigative Ophthalmology & Visual Science | 2013

The Influence of 13-cis Retinoic Acid on Human Meibomian Gland Epithelial Cells

Juan Ding; Wendy R. Kam; Julia Dieckow; David A. Sullivan

PURPOSE Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. METHODS To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. RESULTS We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. CONCLUSIONS Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA-related induction of MGD.


International Journal of Molecular Sciences | 2017

Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer

Stefan Schob; Hans Jonas Meyer; Julia Dieckow; Bhogal Pervinder; Nikolaos Pazaitis; Anne Kathrin Höhn; Nikita Garnov; Diana Horvath-Rizea; Karl-Titus Hoffmann; Alexey Surov

Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm2. Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. Conclusions: histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted.


Investigative Ophthalmology & Visual Science | 2014

Trefoil factor family peptide 3 (TFF3) is upregulated under experimental conditions similar to dry eye disease and supports corneal wound healing effects in vitro.

Ute Schulze; Ulrike Hampel; Saadettin Sel; Laura Contreras-Ruiz; Martin Schicht; Julia Dieckow; Yolanda Diebold; Friedrich Paulsen

PURPOSE To elucidate the role of trefoil family peptide (TFF) 3 at the ocular surface under conditions similar to dry eye disease (DED) and in tears of patients suffering from DED. METHODS Trefoil family peptide 3 levels in tear samples from non-Sjögrens DED patients with moderate dry eye were analyzed by ELISA and compared with tears from healthy volunteers. A human corneal epithelial (HCE) cell line was treated with proinflammatory cytokines IL-1β and TNF-α, hyperosmolar medium, or scratching for up to 24 hours. Trefoil family peptide 3 gene expression and protein biosynthesis were analyzed by RT-PCR, immunofluorescence, and ELISA. Migration and proliferation of HCE cells under recombinant (r) human (h) trefoil factor family peptide 3 (TFF3) stimulation were investigated by scratching and bromodeoxyuridine (BrdU) proliferation assays. RESULTS Tears of patients suffering from DED contained significantly higher TFF3 levels than tears from healthy volunteers. Stimulation of HCE cells with proinflammatory cytokines, culture under hyperosmolar conditions, or scratching resulted, with the exception of hyperosmolar conditions, in an increase in TFF3 expression and elevated secretion level of TFF3. Cell proliferation decreased and cell migration increased after 24-hours stimulation with rhTFF3. CONCLUSIONS These results suggest that inflammatory factors or ocular surface damage as they occur in DED, lead to an increase of TFF3 tear film concentration, whereas hyperosmolarity does not. Our data underline a potential role for TFF3 as a candidate therapeutic for the ocular surface damage observed in DED.


Investigative Ophthalmology & Visual Science | 2016

CXCR4 and CXCR7 Mediate TFF3-Induced Cell Migration Independently From the ERK1/2 Signaling Pathway.

Julia Dieckow; Wolfgang Brandt; Kirsten Hattermann; Stefan Schob; Ute Schulze; Rolf Mentlein; Philipp Ackermann; Saadettin Sel; Friedrich Paulsen

PURPOSE Trefoil factor family (TFF) peptides, and in particular TFF3, are characteristic secretory products of mucous epithelia that promote antiapoptosis, epithelial migration, restitution, and wound healing. For a long time, a receptor for TFF3 had not yet been identified. However, the chemokine receptor CXCR4 has been described as a low affinity receptor for TFF2. Additionally, CXCR7, which is able to heterodimerize with CXCR4, has also been discussed as a potential TFF2 receptor. Since there are distinct structural similarities between the three known TFF peptides, this study evaluated whether CXCR4 and CXCR7 may also act as putative TFF3 receptors. METHODS We evaluated the expression of both CXCR4 and CXCR7 in samples of human ocular surface tissues and cell lines, using RT-PCR, immunohistochemistry, and Western blot analysis. Furthermore, we studied possible binding interactions between TFF3 and the receptor proteins in an x-ray structure-based modeling system. Functional studies of TFF3-CXCR4/CXCR7 interaction were accomplished by cell culture-based migration assays, flow cytometry, and evaluation of activation of the mitogen-activated protein (MAP) kinase signaling cascade. RESULTS We detected both receptors at mRNA and protein level in all analyzed ocular surface tissues, and in lesser amount in ocular surface cell lines. X-ray structure-based modeling revealed CXCR4 and CXCR7 dimers as possible binding partners to TFF3. Cell culture-based assays revealed enhanced cell migration under TFF3 stimulation in a conjunctival epithelial cell line, which was completely suppressed by blocking CXCR4 and/or CXCR7. Flow cytometry showed increased proliferation rates after TFF3 treatment, while blocking both receptors had no effect on this increase. Trefoil factor family 3 also activated the MAP kinase signaling cascade independently from receptor activity. CONCLUSIONS Dimers CXCR4 and CXCR7 are involved in TFF3-dependent activation of cell migration, but not cell proliferation. The ERK1/2 pathway is activated in the process, but not influenced by CXCR4 or CXCR7. These results implicate a dependence of TFF3 activity as to cell migration on the chemokine receptors CXCR4 and CXCR7 at the ocular surface.


PLOS ONE | 2016

The Cerebral Surfactant System and Its Alteration in Hydrocephalic Conditions

Stefan Schob; Donald Lobsien; Benjamin M. Friedrich; Matthias K. Bernhard; C. Gebauer; Julia Dieckow; Matthias Gawlitza; Mandy Pirlich; Dorothee Saur; Lars Bräuer; Ingo Bechmann; Karl-Titus Hoffmann; Cynthia Vanessa Mahr; Ulf Nestler; Matthias Preuß

Introduction Pulmonary Surfactant reduces surface tension in the terminal airways thus facilitating breathing and contributes to host’s innate immunity. Surfactant Proteins (SP) A, B, C and D were recently identified as inherent proteins of the CNS. Aim of the study was to investigate cerebrospinal fluid (CSF) SP levels in hydrocephalus patients compared to normal subjects. Patients and Methods CSF SP A-D levels were quantified using commercially available ELISA kits in 126 patients (0–84 years, mean 39 years). 60 patients without CNS pathologies served as a control group. Hydrocephalus patients were separated in aqueductal stenosis (AQS, n = 24), acute hydrocephalus without aqueductal stenosis (acute HC w/o AQS, n = 16) and idiopathic normal pressure hydrocephalus (NPH, n = 20). Furthermore, six patients with pseudotumor cerebri were investigated. Results SP A—D are present under physiological conditions in human CSF. SP-A is elevated in diseases accompanied by ventricular enlargement (AQS, acute HC w/o AQS) in a significant manner (0.67, 1.21 vs 0.38 ng/ml in control, p<0.001). SP-C is also elevated in hydrocephalic conditions (AQS, acute HC w/o AQS; 0.87, 1.71 vs. 0.48 ng/ml in controls, p<0.001) and in Pseudotumor cerebri (1.26 vs. 0.48 ng/ml in controls, p<0.01). SP-B and SP-D did not show significant alterations. Conclusion The present study confirms the presence of SPs in human CSF. There are significant changes of SP-A and SP-C levels in diseases affecting brain water circulation and elevation of intracranial pressure. Cause of the alterations, underlying regulatory mechanisms, as well as diagnostic and therapeutic consequences of cerebral SP’s requires further thorough investigations.


Annals of Anatomy-anatomischer Anzeiger | 2017

Occurrence and colocalization of surfactant proteins A, B, C and D in the developing and adult rat brain

Stefan Schob; Julia Dieckow; Michael Karl Fehrenbach; Nicole Peukert; Alexander Weiss; Dietrich Kluth; Ulrich Thome; Ulf Quäschling; Martin Lacher; Matthias Preuß

BACKGROUND Surfactant proteins (SPs) have been described as inherent proteins of the human central nervous system (CNS). Their distribution pattern in brain tissue and altered cerebrospinal fluid (CSF) - concentrations in different CNS pathologies are indicative of their immunological and rheological importance. The aim of this study has been to investigate when - compared to the lungs - SPs are expressed in the developing rat brain and which functional components in the CNS participate in their production. MATERIAL AND METHODS Brain and lung tissue from embryonal (days 10, 12, 14, 16, 17 and 20), newborn, and adult rats were harvested and investigated for expression of SP-A, SP-B, SP-C and SP-D using immunofluorescence microscopy in order to identify and compare the time points of their occurence in the respective tissue. To better identify the location of SP expression in the rat brain, SPs were colocalized with use of an astrocyte marker (GFAP), a neuronal marker (NeuN), an endothelial marker (CD31) and an axonal marker (NF). RESULTS AND CONCLUSION SP-A and SP-C are expressed in the CNS of rats during early embryonic age whereas SP-B and SP-D are first present in the adult rat brain. All SPs are expressed in cells adjacent to CSF spaces, probably influencing and maintaining physiological CSF flow. SPs A and C are abundant at the site of the blood brain barrier (BBB).


Translational Oncology | 2018

Whole Tumor Histogram-profiling of Diffusion-Weighted Magnetic Resonance Images Reflects Tumorbiological Features of Primary Central Nervous System Lymphoma

Stefan Schob; Benno Münch; Julia Dieckow; Ulf Quäschling; Karl-Titus Hoffmann; Cindy Richter; Nikita Garnov; Clara Frydrychowicz; Matthias Krause; Hans-Jonas Meyer; Alexey Surov

PURPOSE: Diffusion weighted imaging (DWI) quantifies motion of hydrogen nuclei in biological tissues and hereby has been used to assess the underlying tissue microarchitecture. Histogram-profiling of DWI provides more detailed information on diffusion characteristics of a lesion than the standardly calculated values of the apparent diffusion coefficient (ADC)—minimum, mean and maximum. Hence, the aim of our study was to investigate, which parameters of histogram-profiling of DWI in primary central nervous system lymphoma can be used to specifically predict features like cellular density, chromatin content and proliferative activity. PROCEDURES: Pre-treatment ADC maps of 21 PCNSL patients (8 female, 13 male, 28–89 years) from a 1.5T system were used for Matlab-based histogram profiling. Results of histopathology (H&E staining) and immunohistochemistry (Ki-67 expression) were quantified. Correlations between histogram-profiling parameters and neuropathologic examination were calculated using SPSS 23.0. RESULTS: The lower percentiles (p10 and p25) showed significant correlations with structural parameters of the neuropathologic examination (cellular density, chromatin content). The highest percentile, p90, correlated significantly with Ki-67 expression, resembling proliferative activity. Kurtosis of the ADC histogram correlated significantly with cellular density. CONCLUSIONS: Histogram-profiling of DWI in PCNSL provides a comprehensible set of parameters, which reflect distinct tumor-architectural and tumor-biological features, and hence, are promising biomarkers for treatment response and prognosis.


Molecular Neurobiology | 2018

Localization, Occurrence, and CSF Changes of SP-G, a New Surface Active Protein with Assumable Immunoregulatory Functions in the CNS

Matthias Krause; Nicole Peukert; Wolfgang Härtig; Alexander Emmer; Cynthia Vanessa Mahr; Cindy Richter; Julia Dieckow; Joana Puchta; Mandy Pirlich; Karl-Titus Hoffmann; Ulf Nestler; Stefan Schob

Conventional surfactant proteins (A, B, C, and D) are important players of the innate immunity in the central nervous system and serve as effective regulators of cerebrospinal fluid rheology, probably being involved in clearance of detrimental metabolites like beta-amyloid and phospho-tau. Recently, a novel surfactant protein, SP-G, was described in kidneys and peripheral endocrine and exocrine glands. So far, its presence and possible functions in the central nervous system are unknown. Therefore, our study aimed to elucidate the presence of SP-G in the brain and its concentration in normal and pathologic samples of cerebrospinal fluid in order to gain first insight into its regulation and possible functions. A total of 121 samples of human cerebrospinal fluid (30 controls, 60 hydrocephalus patients, 7 central nervous system infections, and 24 brain hemorrhage patients) and 21 rat brains were included in our study. CSF samples were quantified using a commercially available ELISA system. Results were analyzed statistically using SPSS 22, performing Spearman Rho correlation and ANOVA with Dunnett’s post hoc analysis. Rat brains were investigated via immunofluorescence to determine SP-G presence and colocalization with common markers like aquaporin-4, glial fibrillary acidic protein, platelet endothelial adhesion molecule 1, and neuronal nuclear antigen. SP-G occurs associated with brain vessels, comparable to other conventional SPs, and is present in a set of cortical neurons. SP-G is furthermore actively produced by ependymal and choroid plexus epithelium and secreted into the cerebrospinal fluid. Its concentrations are low in control subjects and patients suffering from aqueductal stenosis, higher in normal pressure hydrocephalus (p < 0.01), and highest in infections of the central nervous system and brain hemorrhage (p < 0.001). Interestingly, SP-G did correlate with total CSF protein in patients with CNS infections and hemorrhage, but not with cell count. Based on the changes in CSF levels of SP-G in hydrocephalus, brain hemorrhage, and CNS infections as well as its abundance at CSF flow-related anatomical structures closely associated with immunological barrier systems, importance for CSF rheology, brain waste clearance, and host defense is assumable. Thus, SP-G is a potential new CSF biomarker, possibly not only reflecting aspects of CNS innate immune responses, but also rheo-dynamically relevant changes of CSF composition, associated with CSF malabsorbtion. However, further studies are warranted to validate our findings and increase insight into the physiological importance of SP-G in the CNS.


Investigative Ophthalmology & Visual Science | 2015

Isolation and Investigation of Presumptive Murine Lacrimal Gland Stem Cells.

Philipp Ackermann; Susann Hetz; Julia Dieckow; Martin Schicht; Anja Richter; Charli Kruse; Insa S. Schroeder; Matthias Jung; Friedrich Paulsen


Molecular Neurobiology | 2018

Elevated Surfactant Protein Levels and Increased Flow of Cerebrospinal Fluid in Cranial Magnetic Resonance Imaging

Stefan Schob; Alexander Weiß; Alexey Surov; Julia Dieckow; Cindy Richter; Mandy Pirlich; Diana Horvath-Rizea; Wolfgang Härtig; Karl-Titus Hoffmann; Matthias Krause; Ulf Quäschling

Collaboration


Dive into the Julia Dieckow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Friedrich Paulsen

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Schicht

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge