Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley Mansell is active.

Publication


Featured researches published by Ashley Mansell.


Nature Immunology | 2006

Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation

Ashley Mansell; Rosealee Smith; Sarah L. Doyle; Pearl Gray; Jennifer E Fenner; Peter J. Crack; Sandra E. Nicholson; Douglas J. Hilton; Luke A. J. O'Neill; Paul J. Hertzog

Toll-like receptor (TLR) signals that initiate innate immune responses to pathogens must be tightly regulated to prevent excessive inflammatory damage to the host. The adaptor protein Mal is specifically involved in signaling via TLR2 and TLR4. We demonstrate here that after TLR2 and TLR4 stimulation Mal becomes phosphorylated by Brutons tyrosine kinase (Btk) and then interacts with SOCS-1, which results in Mal polyubiquitination and subsequent degradation. Removal of SOCS-1 regulation potentiates Mal-dependent p65 phosphorylation and transactivation of NF-κB, leading to amplified inflammatory responses. These data identify a target of SOCS-1 that regulates TLR signaling via a mechanism distinct from an autocrine cytokine response. The transient activation of Mal and subsequent SOCS-1–mediated degradation is a rapid and selective means of limiting primary innate immune response.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia

Kristian Lee Jones; Ashley Mansell; Shane Patella; Bernadette J. Scott; Mark P. Hedger; David M. de Kretser; David J. Phillips

Activin A is a member of the transforming growth factor-β superfamily, which we have identified as having a role in inflammatory responses. We show that circulating levels of activin increase rapidly after LPS-induced challenge through activation of Toll-like receptor 4 and the key adaptor protein, MyD88. Treatment with the activin-binding protein, follistatin, alters the profiles of TNF, IL-1β, and IL-6 after LPS stimulation, indicating that activin modulates the release of several key proinflammatory cytokines. Further, mice administered one 10-μg dose of follistatin to block activin effects have increased survival after a lethal dose of LPS, and the circulating levels of activin correlate with survival outcome. These findings demonstrate activin As crucial role in the inflammatory response and show that blocking its actions by the use of follistatin has significant therapeutic potential to reduce the severity of inflammatory diseases.


Journal of Immunology | 2011

IL-6 Trans-Signaling Modulates TLR4-Dependent Inflammatory Responses via STAT3

Claire J. Greenhill; Stefan Rose-John; Rami Lissilaa; Walter Ferlin; Matthias Ernst; Paul J. Hertzog; Ashley Mansell; Brendan J. Jenkins

Innate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis of TLR4-driven inflammatory disorders, as well as the identity of signaling pathways activated by IL-6 in a proinflammatory state, remain unclear. To define the contribution of gp130 signaling events to TLR4-driven inflammatory responses, we combined genetic and therapeutic approaches based on a series of gp130F/F knock-in mutant mice displaying hyperactivated IL-6–dependent JAK/STAT signaling in an experimental model of LPS/TLR4-mediated septic shock. The gp130F/F mice were markedly hypersensitive to LPS, which was associated with the specific upregulated production of IL-6, but not TNF-α. In gp130F/F mice, either genetic ablation of IL-6, Ab-mediated inhibition of IL-6R signaling or therapeutic blockade of IL-6 trans-signaling completely protected mice from LPS hypersensitivity. Furthermore, genetic reduction of STAT3 activity in gp130F/F:Stat3+/− mice alleviated LPS hypersensitivity and reduced LPS-induced IL-6 production. Additional genetic approaches demonstrated that the TLR4/Mal pathway contributed to LPS hypersensitivity and increased IL-6 production in gp130F/F mice. Collectively, these data demonstrate for the first time, to our knowledge, that IL-6 trans-signaling via STAT3 is a critical modulator of LPS-driven proinflammatory responses through cross-talk regulation of the TLR4/Mal signaling pathway, and potentially implicate cross-talk between JAK/STAT and TLR pathways as a broader mechanism that regulates the severity of the host inflammatory response.


Immunology and Cell Biology | 2007

The negative regulation of Toll-like receptor and associated pathways

Tali Lang; Ashley Mansell

Toll‐like receptors (TLRs) are essential mediators of both innate and adaptive immunity by recognizing and eliciting responses upon invasion of pathogens. The response of TLRs must be stringently regulated as exaggerated expression of signalling components as well as pro‐inflammatory cytokines can have devastating effects on the host, resulting in chronic inflammatory diseases, autoimmune disorders and aid in the pathogenesis of TLR‐associated human diseases. Therefore, it is essential that negative regulators act at multiple levels within TLR signalling cascades, as well as through eliciting negative‐feedback mechanisms in order to synchronize the positive activation and negative regulation of signal transduction to avert potentially harmful immunological consequences. This review explores the various mechanisms employed by negative regulators to ensure the appropriate modulation of both immune and inflammatory responses.


Nature | 2013

A type III effector antagonizes death receptor signalling during bacterial gut infection

Jaclyn S. Pearson; Sze Ong; Catherine L. Kennedy; Michelle Kelly; Keith S. Robinson; Tania Lung; Ashley Mansell; Patrice Riedmaier; Claire Oates; Ali Zaid; Sabrina Mühlen; Valerie F. Crepin; Oliver Marchès; Ching-Seng Ang; Nicholas A. Williamson; Lorraine A. O'Reilly; Aleksandra Bankovacki; Ueli Nachbur; Giuseppe Infusini; Andrew I. Webb; John Silke; Andreas Strasser; Gad Frankel; Elizabeth L. Hartland

Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.


Journal of Hepatology | 2011

The Hepatitis B e antigen (HBeAg) targets and suppresses activation of the Toll-like receptor signaling pathway

Tali Lang; Camden Lo; Narelle Skinner; Stephen Locarnini; Kumar Visvanathan; Ashley Mansell

BACKGROUND & AIMS Viruses target innate immune pathways to evade host antiviral responses. Recent studies demonstrate a relationship between hepatitis B disease states and the hosts innate immune response, although the mechanism of immunomodulation is unknown. In humans, the innate immune system recognizes pathogens via pattern recognition receptors such as the Toll-like receptors (TLR), initiating anti-inflammatory responses. TLR expression and pro-inflammatory cytokine production is reduced in hepatitis B e antigen (HBeAg)-positive patients following TLR stimulation. The aim of this study was to investigate interactions between TLR signaling pathways and the mature HBeAg protein localized in the cytosol. METHODS The ability of HBeAg to inhibit TLR signaling and association with TLR adapters was evaluated by immunoprecipitation, immunostaining, and reporter studies. RESULTS Our findings show that HBeAg co-localizes with Toll/IL-1 receptor (TIR)-containing proteins TRAM, Mal, and TLR2 at the sub-cellular level, which was not observed for Hepatitis B core antigen. Co-immunoprecipitation analysis demonstrated HBeAg interacted with TIR proteins Mal and TRAM, while a mutated HBeAg ablated interaction between Mal and MyD88. Importantly, HBeAg also disrupted homotypic TIR:TIR interaction critical for TLR-mediated signaling. Finally, HBeAg suppressed TIR-mediated activation of the inflammatory transcription factors, NF-κB and Interferon-β promoter activity. CONCLUSIONS Our study provides the first molecular mechanism describing HBeAg immunomodulation of innate immune signal transduction pathways via interaction and targeting of TLR-mediated signaling pathways. These finding suggest the mechanism as to how HBeAg evades innate immune responses contributing to the pathogenesis of chronic hepatitis B infection and the establishment of viral persistence.


Journal of Biological Chemistry | 2009

MyD88 Adapter-like (Mal)/TIRAP Interaction with TRAF6 Is Critical for TLR2- and TLR4-mediated NF-κB Proinflammatory Responses

Brett Verstak; Kamalpreet Nagpal; Stephen P. Bottomley; Douglas T. Golenbock; Paul J. Hertzog; Ashley Mansell

Toll/interleukin-1 (TIR)receptor-containing adapters are critical in orchestrating the different signal transduction pathways following Toll-like receptor (TLR) activation. MyD88 adapter-like (Mal), also termed TIRAP, is involved in bridging MyD88 to the receptor complex for TLR-2 and TLR4 signaling in response to bacterial infection. We have previously reported an interaction between Mal and tumor necrosis factor receptor-associated factor 6 (TRAF6) via a TRAF6-binding motif, the disruption of which inhibited TLR-mediated NF-κB-luciferase reporter activity. Given the recent report of intracellular TRAM localization promoting sequential signaling in TLR4 responses, we further characterized Mal interaction with TRAF6, the cellular localization, and the outcomes of disrupting this association on TLR inflammatory responses. We found that Mal and TRAF6 directly interact in response to TLR2 and TLR4 stimulation, although membrane localization is not necessary to facilitate interaction. Critically, reconstitution of murine Mal-deficient macrophages with MalE190A, containing a mutation within the TRAF6-binding motif, fails to reconstitute the proinflammatory response to TLR2 and TLR4 ligands compared with wild type Mal. Furthermore, Mal interaction with TRAF6 mediates Ser phosphorylation of the p65 subunit of NF-κB and thus controls transcriptional activation but not nuclear translocation of NF-κB. This study characterizes the novel role for Mal in facilitating the direct recruitment of TRAF6 to the plasma membrane, which is necessary for TLR2- and TLR4-induced transactivation of NF-κB and regulation of the subsequent pro-inflammatory response.


Journal of Biological Chemistry | 2004

Mal Interacts with Tumor Necrosis Factor Receptor-associated Factor (TRAF)-6 to mediate NF-κB Activation by Toll-like Receptor (TLR)-2 and TLR4

Ashley Mansell; Elizabeth Brint; Jodee Gould; Luke A. J. O'Neill; Paul J. Hertzog

The Toll-interleukin-1 receptor domain-containing adapter Mal (MyD88 adapter-like protein) is involved in Toll-like receptor (TLR)-2 and TLR4 signal transduction. However, no studies have yet identified a function for Mal distinct from the related adapter MyD88. In this study, we have identified a putative TRAF6 interaction site in Mal but not in MyD88 and we demonstrate that Mal can be co-immunoprecipitated with TRAF6. Overexpression of MalE190A, which contains a mutation within the TRAF6-binding motif, failed to induce the expression of an NF-κB-dependent reporter gene, p65-mediated transactivation of gene expression, or activation of Jun N-terminal kinase or p42/p44 MAP kinase, which are induced with wild type Mal. MalE190A inhibited TLR2- and TLR4-mediated activation of NF-κB. These results identify a specific role for Mal in TLR-mediated signaling in regulating NF-κB-dependent gene transcription via its interaction with TRAF6.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection

Eugene Valkov; Anna Stamp; Frank DiMaio; David Baker; Brett Verstak; Pietro Roversi; Stuart Kellie; Matthew J. Sweet; Ashley Mansell; Jennifer L. Martin; Bostjan Kobe

Initiation of the innate immune response requires agonist recognition by pathogen-recognition receptors such as the Toll-like receptors (TLRs). Toll/interleukin-1 receptor (TIR) domain-containing adaptors are critical in orchestrating the signal transduction pathways after TLR and interleukin-1 receptor activation. Myeloid differentiation primary response gene 88 (MyD88) adaptor-like (MAL)/TIR domain-containing adaptor protein (TIRAP) is involved in bridging MyD88 to TLR2 and TLR4 in response to bacterial infection. Genetic studies have associated a number of unique single-nucleotide polymorphisms in MAL with protection against invasive microbial infection, but a molecular understanding has been hampered by a lack of structural information. The present study describes the crystal structure of MAL TIR domain. Significant structural differences exist in the overall fold of MAL compared with other TIR domain structures: A sequence motif comprising a β-strand in other TIR domains instead corresponds to a long loop, placing the functionally important “BB loop” proline motif in a unique surface position in MAL. The structure suggests possible dimerization and MyD88-interacting interfaces, and we confirm the key interface residues by coimmunoprecipitation using site-directed mutants. Jointly, our results provide a molecular and structural basis for the role of MAL in TLR signaling and disease protection.


PLOS Pathogens | 2013

Activation of the NLRP3 Inflammasome by IAV Virulence Protein PB1-F2 Contributes to Severe Pathophysiology and Disease

Julie L. McAuley; Michelle D. Tate; Charley Mackenzie-Kludas; Anita Pinar; Weiguang Zeng; Andrea Stutz; Eicke Latz; Lorena E. Brown; Ashley Mansell

The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1β by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1β secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1β secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1β secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1β secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen ‘danger’ signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection.

Collaboration


Dive into the Ashley Mansell's collaboration.

Top Co-Authors

Avatar

Paul J. Hertzog

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bostjan Kobe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jennifer K. Dowling

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michelle D. Tate

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brendan J. Jenkins

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge