Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley N. Brown is active.

Publication


Featured researches published by Ashley N. Brown.


Antimicrobial Agents and Chemotherapy | 2009

Prediction of the Pharmacodynamically Linked Variable of Oseltamivir Carboxylate for Influenza A Virus Using an In Vitro Hollow-Fiber Infection Model System

James J. McSharry; Qingmei Weng; Ashley N. Brown; Robert Kulawy; George L. Drusano

ABSTRACT MDCK cells transfected with the human β-galactoside α-2,6-sialyltransferase 1 gene (AX-4 cells) were used to determine the drug susceptibility and pharmacodynamically linked variable of oseltamivir for influenza virus. For dose-ranging studies, five hollow-fiber units were charged with 102 A/Sydney/5/97 (H3N2) influenza virus-infected AX-4 cells and 108 uninfected AX-4 cells. Each unit was treated continuously with different oseltamivir carboxylate concentrations in virus growth medium for 6 days. For dose fractionation studies, one hollow-fiber unit received no drug, one unit received a 1× 50% effective concentration (EC50) exposure to oseltamivir by continuous infusion, one unit received the same AUC0-24 (area under the concentration-time curve from 0 to 24 h) by 1-h infusion every 24 h, one unit received the same total exposure in two equal fractions every 12 h, and one unit received the same total exposure in three equal fractions every 8 h. Each infusion dose was followed by a no-drug washout, producing the appropriate half-life for this drug. The effect of the drug on virus replication was determined by sampling the units daily, measuring the amount of released virus by plaque assay, and performing a hemagglutination assay. The drug concentration in the hollow-fiber infection model systems was determined at various times by liquid chromatography-tandem mass spectrometry. The dose-ranging study showed that the EC50s for oseltamivir carboxylate for the A/Sydney/5/97 strain of influenza virus was about 1.0 ng/ml. The dose fractionation study showed that all treatment arms suppressed virus replication to the same extent, indicating that the pharmacodynamically linked variable was the AUC0-24/EC50 ratio. This implies that it may be possible to treat influenza virus infection once daily with a dose of 150 mg/day.


Antimicrobial Agents and Chemotherapy | 2010

In Vitro System for Modeling Influenza A Virus Resistance under Drug Pressure

Ashley N. Brown; James J. McSharry; Qingmei Weng; Elizabeth M. Driebe; David M. Engelthaler; Kelly Sheff; Paul Keim; Jack Nguyen; George L. Drusano

ABSTRACT One of the biggest challenges in the effort to treat and contain influenza A virus infections is the emergence of resistance during treatment. It is well documented that resistance to amantadine arises rapidly during the course of treatment due to mutations in the gene coding for the M2 protein. To address this problem, it is critical to develop experimental systems that can accurately model the selection of resistance under drug pressure as seen in humans. We used the hollow-fiber infection model (HFIM) system to examine the effect of amantadine on the replication of influenza virus, A/Albany/1/98 (H3N2), grown in MDCK cells. At 24 and 48 h postinfection, virus replication was inhibited in a dose-dependent fashion. At 72 and 96 h postinfection, virus replication was no longer inhibited, suggesting the emergence of amantadine-resistant virus. Sequencing of the M2 gene revealed that mutations appeared at between 48 and 72 h of drug treatment and that the mutations were identical to those identified in the clinic for amantadine-resistant viruses (e.g., V27A, A30T, and S31N). Interestingly, we found that the type of mutation was strongly affected by the dose of the drug. The data suggest that the HFIM is a good model for influenza virus infection and resistance generation in humans. The HFIM has the advantage of being a highly controlled system where multiplicity parameters can be directly and accurately controlled and measured.


Antimicrobial Agents and Chemotherapy | 2011

Effect of Half-Life on the Pharmacodynamic Index of Zanamivir against Influenza Virus Delineated by a Mathematical Model

Ashley N. Brown; Jürgen B. Bulitta; James J. McSharry; Qingmei Weng; Jonathan R. Adams; Robert Kulawy; George L. Drusano

ABSTRACT Intravenous zanamivir is recommended for the treatment of hospitalized patients with complicated oseltamivir-resistant influenza virus infections. In a companion paper, we show that the time above the 50% effective concentration (time>EC50) is the pharmacodynamic (PD) index predicting the inhibition of viral replication by intravenous zanamivir. However, for other neuraminidase inhibitors, the ratio of the area under the concentration-time curve to the EC50 (AUC/EC50) is the most predictive index. Our objectives are (i) to explain the dynamically linked variable of intravenous zanamivir by using different half-lives and (ii) to develop a new, mechanism-based population pharmacokinetic (PK)/PD model for the time course of viral load. We conducted dose fractionation studies in the hollow-fiber infection model (HFIM) system with zanamivir against an oseltamivir-resistant influenza virus. A clinical 2.5-h half-life and an artificially prolonged 8-h half-life were simulated for zanamivir. The values for the AUC from 0 to 24 h (AUC0-24) of zanamivir were equivalent for the two half-lives. Viral loads and zanamivir pharmacokinetics were comodeled using data from the present study and a previous dose range experiment via population PK/PD modeling in S-ADAPT. Dosing every 8 h (Q8h) suppressed the viral load better than dosing Q12h or Q24h at the 2.5-h half-life, whereas all regimens suppressed viral growth similarly at the 8-h half-life. The model provided unbiased and precise individual (Bayesian) (r 2, >0.96) and population (pre-Bayesian) (r 2, >0.87) fits for log10 viral load. Zanamivir inhibited viral release (50% inhibitory concentration [IC50], 0.0168 mg/liter; maximum extent of inhibition, 0.990). We identified AUC/EC50 as the pharmacodynamic index for zanamivir at the 8-h half-life, whereas time>EC50 best predicted viral suppression at the 2.5-h half-life, since the trough concentrations approached the IC50 for the 2.5-h but not for the 8-h half-life. The model explained data at both half-lives and holds promise for optimizing clinical zanamivir dosage regimens.


Antimicrobial Agents and Chemotherapy | 2011

Zanamivir, at 600 Milligrams Twice Daily, Inhibits Oseltamivir-Resistant 2009 Pandemic H1N1 Influenza Virus in an In Vitro Hollow-Fiber Infection Model System

Ashley N. Brown; James J. McSharry; Qingmei Weng; Jonathan R. Adams; Robert Kulawy; George L. Drusano

ABSTRACT In 2009, a novel H1N1 influenza A virus emerged and spread worldwide, initiating a pandemic. Various isolates obtained from disparate parts of the world were shown to be uniformly resistant to the adamantanes but sensitive to the neuraminidase inhibitors oseltamivir and zanamivir. Over time, resistance to oseltamivir became more prevalent among pandemic H1N1 virus isolates, while most remained susceptible to zanamivir. The government has proposed the use of intravenous (i.v.) zanamivir to treat serious influenza virus infections among hospitalized patients. To use zanamivir effectively for patients with severe influenza, it is necessary to know the optimal dose and schedule of administration of zanamivir that will inhibit the replication of oseltamivir-sensitive and -resistant influenza viruses. Therefore, we performed studies using the in vitro hollow-fiber infection model system to predict optimal dosing regimens for zanamivir against an oseltamivir-sensitive and an oseltamivir-resistant virus. Our results demonstrated that zanamivir, at a dose of 600 mg given twice a day (Q12h), inhibited the replication of oseltamivir-sensitive and oseltamivir-resistant influenza viruses throughout the course of the experiment. Thus, our findings suggest that intravenous zanamivir, at a dose of 600 mg Q12h, could be used to treat hospitalized patients suffering from serious infections with oseltamivir-sensitive or -resistant influenza viruses.


The Journal of Infectious Diseases | 2016

Chikungunya Virus: In Vitro Response to Combination Therapy With Ribavirin and Interferon Alfa 2a.

Karen M. Gallegos; George L. Drusano; David Z. D’Argenio; Ashley N. Brown

INTRODUCTION We evaluated the antiviral activities of ribavirin (RBV) and interferon (IFN) alfa as monotherapy and combination therapy against chikungunya virus (CHIKV). METHODS Vero cells were infected with CHIKV in the presence of RBV and/or IFN alfa, and viral production was quantified by plaque assay. A mathematical model was fit to the data to identify drug interactions for effect. We ran simulations using the best-fit model parameters to predict the antiviral activity associated with clinically relevant regimens of RBV and IFN alfa as combination therapy. The model predictions were validated using the hollow fiber infection model (HFIM) system. RESULTS RBV and IFN alfa were effective against CHIKV as monotherapy at supraphysiological concentrations. However, RBV and IFN alfa were highly synergistic for antiviral effect when administered as combination therapy. Simulations with our mathematical model predicted that a standard clinical regimen of RBV plus IFN alfa would inhibit CHIKV burden by 2.5 log10 following 24 hours of treatment. In the HFIM system, RBV plus IFN alfa at clinical exposures resulted in a 2.1-log10 decrease in the CHIKV burden following 24 hours of therapy. These findings validate the prediction made by the mathematical model. CONCLUSIONS These studies illustrate the promise of RBV plus IFN alfa as a potential therapeutic strategy for the treatment of CHIKV infections.


Antimicrobial Agents and Chemotherapy | 2017

Zika Virus Replication Is Substantially Inhibited by Novel Favipiravir and Interferon Alpha Combination Regimens

Camilly P. Pires de Mello; Xun Tao; Tae Hwan Kim; Jürgen B. Bulitta; Jaime L. Rodriquez; Justin J. Pomeroy; Ashley N. Brown

ABSTRACT Zika virus (ZIKV) is a major public health concern due to its overwhelming spread into the Americas. Currently, there are neither licensed vaccines nor antiviral therapies available for the treatment of ZIKV. We aimed to identify and rationally optimize effective therapeutic regimens for ZIKV by evaluating the antiviral potentials of the approved broad-spectrum antiviral agents favipiravir (FAV), interferon alpha (IFN), and ribavirin (RBV) as single agents and in combinations. For these studies, Vero cells were infected with ZIKV in the presence of increasing concentrations of FAV, IFN, or/and RBV for 4 days. Supernatants were harvested daily, and the viral burden was quantified by a plaque assay on Vero cells. The time course of the viral burden during treatment in vitro was characterized by a novel translational, mechanism-based model, which was subsequently used to rationally optimize combination dosage regimens. The combination regimen of FAV plus IFN provided the greatest extent of viral inhibition without cytotoxicity, reducing the viral burden by 4.4 log10 PFU/ml at concentrations of 250 μM FAV and 100 IU/ml IFN. Importantly, these concentrations are achievable in humans. The translational, mechanism-based model yielded unbiased and reasonably precise curve fits. Simulations with the model predicted that clinically relevant regimens of FAV plus IFN would markedly reduce viral burdens in humans, resulting in at least a 10,000-fold reduction in the amount of the virus during the first 4 days of treatment. These findings highlight the substantial promise of rationally optimized combination dosage regimens of FAV plus IFN, which should be further investigated to combat ZIKV.


Antimicrobial Agents and Chemotherapy | 2015

Pharmacokinetic Determinants of Virological Response to Raltegravir in the In Vitro Pharmacodynamic Hollow-Fiber Infection Model System

Ashley N. Brown; Jonathan R. Adams; Dodge Baluya; George L. Drusano

ABSTRACT Daily administration (q24h) of raltegravir has been shown to be as efficacious as twice-daily administration (q12h) in the hollow-fiber infection model (HFIM) system. However, q24h regimens were not noninferior to q12h dosing in a clinical trial. We hypothesized that between-patient variability in raltegravir pharmacokinetics (PK) was responsible for the discordance in conclusions between the in vitro and in vivo studies. Hollow-fiber cartridges were inoculated with HIV-infected H9 cells and uninfected CEM-SS cells. Four cartridges received the total daily exposure (800 mg) q24h and four received half the daily exposure (400 mg) q12h. PK profiles with half-lives of 8, 4, 3, and 2 h were simulated for each dosing interval. Cell-to-cell viral spread was assessed by flow cytometry. Viral inhibition was similar between q24h and q12h dosing at the 8- and 4-h half-lives. The q24h dosing was not as efficacious as the q12h dosing when faster half-lives were simulated; a lack of viral suppression was observed at days 3 and 4 for the 2- and 3-h half-lives, respectively. The discrepancy in conclusions between the in vitro HFIM system studies and clinical trials is likely due to the large interindividual variation in raltegravir PK.


Antimicrobial Agents and Chemotherapy | 2012

Pharmacodynamic Analysis of a Serine Protease Inhibitor, MK-4519, against Hepatitis C Virus Using a Novel In Vitro Pharmacodynamic System

Ashley N. Brown; James J. McSharry; Jonathan R. Adams; Robert Kulawy; Richard J.O. Barnard; W. Newhard; A. Corbin; Daria J. Hazuda; Arnold Louie; George L. Drusano

ABSTRACT The development of new antiviral compounds active against hepatitis C virus (HCV) has surged in recent years. In order for these new compounds to be efficacious in humans, optimal dosage regimens for each compound must be elucidated. We have developed a novel in vitro pharmacokinetic/pharmacodynamic system, the BelloCell system, to identify optimal dosage regimens for anti-HCV compounds. In these experiments, genotype 1b HCV replicon-bearing cells (2209-23 cells) were inoculated onto carrier flakes in BelloCell bottles and treated with MK-4519, a serine protease inhibitor. Our dose-ranging studies illustrated that MK-4519 inhibited replicon replication in a dose-dependent manner, yielding a 50% effective concentration (EC50) of 1.8 nM. Dose-fractionation studies showed that shorter dosing intervals resulted in greater replicon suppression, indicating that the time that the concentration is greater than the EC50 is the pharmacodynamic parameter for MK-4519 linked with inhibition of replicon replication. Mutations associated with resistance to serine protease inhibitors were detected in replicons harvested from all treatment arms. These data suggest that MK-4519 is highly active against genotype 1b HCV, but monotherapy is not sufficient to prevent the amplification of resistant replicons. In summary, our findings show that the BelloCell system is a useful and clinically relevant tool for predicting optimal dosage regimens for anti-HCV compounds.


European Journal of Pharmaceutical Sciences | 2018

Oseltamivir-zanamivir combination therapy suppresses drug-resistant H1N1 influenza A viruses in the hollow fiber infection model (HFIM) system

Camilly P. Pires de Mello; George L. Drusano; Jonathan R. Adams; Matthew Shudt; Robert Kulawy; Ashley N. Brown

ABSTRACT Drug‐resistant influenza is a significant threat to global public health. Until new antiviral agents with novel mechanisms of action become available, there is a pressing need for alternative treatment strategies with available influenza antivirals. Our aims were to evaluate the antiviral activity of two neuraminidase inhibitors (oseltamivir and zanamivir) as combination therapy against H1N1 influenza A viruses, as these agents bind to the neuraminidase active site differently: oseltamivir requires a conformational change for binding whereas zanamivir does not. We performed pharmacodynamic studies in the hollow fiber infection model (HFIM) system with oseltamivir (75 mg Q12h, t1/2: 8 h) and zanamivir (600 mg Q12h, t1/2: 2.5 h), given as mono‐ or combination therapy, against viruses with varying susceptibilities to oseltamivir and zanamivir. Each antiviral suppressed the replication of influenza strains which were resistant to the other neuraminidase inhibitor, showing each drug does not engender cross‐resistance to the other compound. Oseltamivir/zanamivir combination therapy was as effective at suppressing oseltamivir‐ and zanamivir‐resistant influenza viruses and the combination regimen inhibited viral replication at a level that was similar to the most effective monotherapy arm. However, combination therapy offered a clear benefit by preventing the emergence and spread of drug‐resistant viruses. These findings demonstrate that combination therapy with two agents that target the same viral protein through distinctly different binding interactions is a feasible strategy to combat resistance emergence. This is a novel finding that may be applicable to other viral and non‐viral diseases for which different classes of agents do not exist. Graphical abstract Figure. No Caption available.


Viruses | 2018

Antiviral Effects of Clinically-Relevant Interferon-α and Ribavirin Regimens against Dengue Virus in the Hollow Fiber Infection Model (HFIM)

Camilly P. Pires de Mello; George L. Drusano; Jaime L. Rodriquez; Ajeet Kaushik; Ashley N. Brown

Dengue virus (DENV) is the most prevalent mosquito-borne viral illness in humans. Currently, there are no therapeutic agents available to prevent or treat DENV infections. Our objective was to fill this unmet medical need by evaluating the antiviral activity of interferon-α (IFN) and ribavirin (RBV) as a combination therapy against DENV. DENV-infected Vero and Huh-7 cells were exposed to RBV and/or IFN, and the viral burden was quantified over time by plaque assay. Drug-drug interactions for antiviral effect were determined by fitting a mathematical model to the data. We then assessed clinically-relevant exposures of IFN plus RBV using the hollow fiber infection model (HFIM) system. RBV monotherapy was only effective against DENV at toxic concentrations in Vero and Huh-7 cells. IFN, as a single agent, did inhibit DENV replication at physiological concentrations and viral suppression was substantial in Huh-7 cells (Half maximal effective concentration (EC50) = 58.34 IU/mL). As a combination therapy, RBV plus IFN was additive for viral suppression in both cell lines; however, enhancement of antiviral activity at clinically-achievable concentrations was observed only in Huh-7 cells. Finally, clinical exposures of RBV plus IFN suppressed DENV replication by 99% even when treatment was initiated 24 h post-infection in the HFIM. Further evaluation revealed that the antiviral effectiveness of the combination regimen against DENV is mostly attributed to activity associated with IFN. These findings suggest that IFN is a potential therapeutic strategy for the treatment of DENV.

Collaboration


Dive into the Ashley N. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajeet Kaushik

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge