Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley P. Ballantyne is active.

Publication


Featured researches published by Ashley P. Ballantyne.


Nature | 2012

Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years

Ashley P. Ballantyne; Caroline B. Alden; J. B. Miller; Pieter P. Tans; James W. C. White

One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO2 emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon–climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO2 measurements, CO2 emission inventories and their full range of uncertainties to calculate changes in global CO2 sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon–climate interactions.


Nature | 2004

Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes

Dörthe C. Müller-Navarra; Michael T. Brett; Sangkyu Park; Sudeep Chandra; Ashley P. Ballantyne; E. Zorita; Charles R. Goldman

Determining the factors that control food web interactions is a key issue in ecology. The empirical relationship between nutrient loading (total phosphorus) and phytoplankton standing stock (chlorophyll a) in lakes was described about 30 years ago and is central for managing surface water quality. The efficiency with which biomass and energy are transferred through the food web and sustain the production of higher trophic levels (such as fish) declines with nutrient loading and system productivity, but the underlying mechanisms are poorly understood. Here we show that in seston (fine particles in water) during summer, specific ω3-polyunsaturated fatty acids (ω3-PUFAs), which are important for zooplankton, are significantly correlated to the trophic status of the lake. The ω3-PUFAs octadecatetraenoic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid, but not α-linolenic acid, decrease on a double-logarithmic scale with increasing total phosphorus. By combining the empirical relationship between EPA-to-carbon content and total phosphorus with functional models relating EPA-to-carbon content to the growth and egg production of daphnids, we predict secondary production for this key consumer. Thus, the decreasing efficiency in energy transfer with increasing lake productivity can be explained by differences in ω3-PUFA-associated food quality at the plant–animal interface.


Geology | 2010

Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies

Ashley P. Ballantyne; David R. Greenwood; J.S. Sinninghe Damsté; Adam Csank; Jaelyn J. Eberle; Natalia Rybczynski

Temperatures in the Arctic have increased by an astounding 1 °C in response to anthropogenic forcing over the past 20 years and are expected to rise further in the coming decades. The Pliocene (2.6–5.3 Ma) is of particular interest as an analog for future warming because global temperatures were signifi cantly warmer than today for a sustained period of time, with continental confi gurations similar to present. Here, we estimate mean annual temperature (MAT) based upon three independent proxies from an early Pliocene peat deposit in the Canadian High Arctic. Our proxies, including oxygen isotopes and annual ring widths (MAT = –0.5 ± 1.9 °C), coexistence of paleovegetation (MAT = –0.4 ± 4.1 °C), and bacterial tetraether composition in paleosols (MAT = –0.6 ± 5.0 °C), yield estimates that are statistically indistinguishable. The consensus among these proxies suggests that Arctic temperatures were ~19 °C warmer during the Pliocene than at present, while atmospheric CO 2 concentrations were ~390 ppmv. These elevated Arctic Pliocene temperatures result in a greatly reduced and asymmetrical latitudinal temperature gradient that is probably the result of increased poleward heat transport and decreased albedo. These results indicate that Arctic temperatures may be exceedingly sensitive to anthropogenic CO 2 emissions.


Geophysical Research Letters | 2015

Artificial amplification of warming trends across the mountains of the western United States

Jared Wesley Oyler; Solomon Z. Dobrowski; Ashley P. Ballantyne; Anna E. Klene; Steven W. Running

Observations from the main mountain climate station network in the western United States (U.S.) suggest that higher elevations are warming faster than lower elevations. This has led to the assumption that elevation-dependent warming is prevalent throughout the region with impacts to water resources and ecosystem services. Here we critically evaluate this networks temperature observations and show that extreme warming observed at higher elevations is the result of systematic artifacts and not climatic conditions. With artifacts removed, the networks 1991–2012 minimum temperature trend decreases from +1.16°C decade−1 to +0.106°C decade−1 and is statistically indistinguishable from lower elevation trends. Moreover, longer-term widely used gridded climate products propagate the spurious temperature trend, thereby amplifying 1981–2012 western U.S. elevation-dependent warming by +217 to +562%. In the context of a warming climate, this artificial amplification of mountain climate trends has likely compromised our ability to accurately attribute climate change impacts across the mountainous western U.S.


Geophysical Research Letters | 2005

Meta‐analysis of tropical surface temperatures during the Last Glacial Maximum

Ashley P. Ballantyne; M. Lavine; Thomas J. Crowley; J. Liu; P. B. Baker

[1] The magnitude of tropical cooling during the Last Glacial Maximum (LGM) has been the subject of uncertainty for over 25 years. We use principles of metaanalysis as an objective approach to reconcile estimates from different proxies. This approach treats each observation as a random estimate of the true mean and weights estimates by their reported precision. We assigned global uncertainties to proxies and derived a new regional standard deviation for temperatures calculated from the Sr/Ca ratio in tropical corals (s =1 .4� C). Using a Bayesian spatial interpolation scheme, we estimate a mean cooling of LGM tropical sea surface temperatures of � 2.7 ± 0.5C (±s) and surface air temperatures of � 5.4 ± 0.3C (±s). Citation: Ballantyne, A. P., M. Lavine, T. J. Crowley, J. Liu, and P. B. Baker (2005), Meta-analysis of tropical surface temperatures during the Last Glacial Maximum, Geophys. Res. Lett., 32, L05712, doi:10.1029/ 2004GL021217.


PLOS ONE | 2015

A fatty acid based bayesian approach for inferring diet in aquatic consumers

Aaron W. E. Galloway; Michael T. Brett; Gordon W. Holtgrieve; Eric J. Ward; Ashley P. Ballantyne; Carolyn W. Burns; Martin J. Kainz; Doerthe C. Müller-Navarra; Jonas Persson; Joseph L. Ravet; Ursula Strandberg; Sami J. Taipale; Gunnel Alhgren

We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a ‘consumer-resource library’ of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.


Global Biogeochemical Cycles | 2015

Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry

Janice Brahney; Natalie M. Mahowald; Daniel S. Ward; Ashley P. Ballantyne; Jason C. Neff

Anthropogenic activities have significantly altered atmospheric chemistry and changed the global mobility of key macronutrients. Here we show that contemporary global patterns in nitrogen (N) and phosphorus (P) emissions drive large hemispheric variation in precipitation chemistry. These global patterns of nutrient emission and deposition (N:P) are in turn closely reflected in the water chemistry of naturally oligotrophic lakes (r2 = 0.81, p < 0.0001). Observed increases in anthropogenic N deposition play a role in nutrient concentrations (r2 = 0.20, p < 0.05); however, atmospheric deposition of P appears to be major contributor to this pattern (r2 = 0.65, p < 0.0001). Atmospheric simulations indicate a global increase in P deposition by 1.4 times the preindustrial rate largely due to increased dust and biomass burning emissions. Although changes in the mass flux of global P deposition are smaller than for N, the impacts on primary productivity may be greater because, on average, one unit of increased P deposition has 16 times the influence of one unit of N deposition. These stoichiometric considerations, combined with the evidence presented here, suggest that increases in P deposition may be a major driver of alpine Lake trophic status, particularly in the Southern Hemisphere. These results underscore the need for the broader scientific community to consider the impact of atmospheric phosphorus deposition on the water quality of naturally oligotrophic lakes.


Global Biogeochemical Cycles | 2014

Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest

David R. Bowling; Ashley P. Ballantyne; J. B. Miller; Sean P. Burns; T. J. Conway; O. Menzer; Britton B. Stephens; Bruce H. Vaughn

Fossil fuel combustion has increased atmospheric CO2 by ≈ 115 µmol mol−1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7–2‰ (the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2 released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR > δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D = −0.75 ± 0.21‰ or −0.88 ± 0.10‰ depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil.


Earth Interactions | 2011

Regional Differences in South American Monsoon Precipitation Inferred from the Growth and Isotopic Composition of Tropical Trees

Ashley P. Ballantyne; Paul A. Baker; J. Q. Chambers; R. Villalba; J. Argollo

Abstract The authors present results on the relationship between tree-ring proxies and regional precipitation for several sites in tropical South America. The responsiveness of oxygen isotopes (δ18O) and seasonal growth as precipitation proxies was first validated by high-resolution sampling of a Tachigali myrmecophila from Manaus, Brazil (3.1°S, 60.0°W). Monthly growth of Tachigali spp. was significantly correlated with monthly precipitation. Intra-annual measurements of cellulose δ18O in Tachigali spp. were also significantly correlated with monthly precipitation at a lag of approximately one month. The annual ring widths of two tropical tree taxa, Cedrela odorata growing in the Amazon (12.6°S, 69.2°W) and Polylepis tarapacana growing in the Altiplano (22.0°S, 66.0°W), were validated using bomb-derived radiocarbon 14C. Estimated dates were within two to three years of bomb-inferred 14C dates, indicating that these species exhibit annual rings but uncertainties in our chronologies remain. A multiproxy re...


Proceedings of the National Academy of Sciences of the United States of America | 2016

Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets

Wei Li; Philippe Ciais; Yilong Wang; Shushi Peng; Grégoire Broquet; Ashley P. Ballantyne; Josep G. Canadell; Leila Cooper; Pierre Friedlingstein; Corinne Le Quéré; Ranga B. Myneni; Glen P. Peters; Shilong Piao; Julia Pongratz

Significance The conventional approach of calculating the global carbon budget makes the land sink the most uncertain of all budget terms. This is because, rather than being constrained by observations, it is inferred as a residual in the budget equation. Here, we overcome this limitation by performing a Bayesian fusion of different available observation-based estimates of decadal carbon fluxes. This approach reduces the uncertainty in the land sink by 41% and in the ocean sink by 46%. These results are significant because they give unprecedented confidence in the role of the increasing land sink in regulating atmospheric CO2, and shed light on the past decadal trend. Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y−2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes.

Collaboration


Dive into the Ashley P. Ballantyne's collaboration.

Top Co-Authors

Avatar

Jason C. Neff

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherilyn C. Fritz

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice Brahney

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge