Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason C. Neff is active.

Publication


Featured researches published by Jason C. Neff.


Ecosystems | 2006

Reconciling carbon-cycle concepts, terminology, and methods

F. S. Chapin; George M. Woodwell; James T. Randerson; Edward B. Rastetter; Gary M. Lovett; Dennis D. Baldocchi; Deborah A. Clark; Mark E. Harmon; David S. Schimel; Riccardo Valentini; Christian Wirth; John D. Aber; Jonathan J. Cole; Michael L. Goulden; Jennifer W. Harden; Martin Heimann; Robert W. Howarth; Pamela A. Matson; A. D. McGuire; Jerry M. Melillo; Harold A. Mooney; Jason C. Neff; R. A. Houghton; Michael L. Pace; Michael G. Ryan; Steven W. Running; Osvaldo E. Sala; William H. Schlesinger; Ernst-Detlef Schulze

Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by scientists to represent two different concepts. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER). We further propose that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from [negative sign]) ecosystems. Net ecosystem carbon balance differs from NEP when C fluxes other than C fixation and respiration occur, or when inorganic C enters or leaves in dissolved form. These fluxes include the leaching loss or lateral transfer of C from the ecosystem; the emission of volatile organic C, methane, and carbon monoxide; and the release of soot and CO2 from fire. Carbon fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to the measurement of C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we can provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle.


Science | 2006

The Impact of Boreal Forest Fire on Climate Warming

James T. Randerson; Heping Liu; Mark G. Flanner; Sd Chambers; Yufang Jin; Peter G. Hess; G. G. Pfister; Michelle C. Mack; Kathleen K. Treseder; Lisa R. Welp; F. S. Chapin; Jennifer W. Harden; Michael L. Goulden; Evan A. Lyons; Jason C. Neff; Edward A. G. Schuur; Charles S. Zender

We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ± 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (–2.3 ± 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.


Frontiers in Ecology and the Environment | 2010

The ecology of dust

Jason P. Field; Jayne Belnap; David D. Breshears; Jason C. Neff; Gregory S. Okin; Jeffrey J. Whicker; Thomas H. Painter; Sujith Ravi; Marith C. Reheis; Richard L. Reynolds

Wind erosion and associated dust emissions play a fundamental role in many ecological processes and provide important biogeochemical connectivity at scales ranging from individual plants up to the entire globe. Yet, most ecological studies do not explicitly consider dust-driven processes, perhaps because most relevant research on aeolian (wind-driven) processes has been presented in a geosciences rather than an ecological context. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the scale of plants and surrounding space to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. It is likely that changes in climate and intensification of land use will lead to increased dust production from many drylands. To address these issues, environmental scientists, land managers, and policy makers need to consider wind erosion and dust emissions more explicitly in resource management decisions.


Environmental Microbiology | 2008

The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling

Diana R. Nemergut; Alan R. Townsend; Sarah R. Sattin; K. R. Freeman; Noah Fierer; Jason C. Neff; William D. Bowman; Christopher W. Schadt; Michael N. Weintraub; Steven K. Schmidt

Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.


Carbon Balance and Management | 2007

Africa and the global carbon cycle

Christopher A. Williams; Niall P. Hanan; Jason C. Neff; Robert J. Scholes; Joseph A. Berry; A. Scott Denning; D. F. Baker

The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africas continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africas primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO2. Considering the continents sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africas carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century.


Carbon Balance and Management | 2007

Estimates of CO2 from fires in the United States: implications for carbon management

Christine Wiedinmyer; Jason C. Neff

BackgroundFires emit significant amounts of CO2 to the atmosphere. These emissions, however, are highly variable in both space and time. Additionally, CO2 emissions estimates from fires are very uncertain. The combination of high spatial and temporal variability and substantial uncertainty associated with fire CO2 emissions can be problematic to efforts to develop remote sensing, monitoring, and inverse modeling techniques to quantify carbon fluxes at the continental scale. Policy and carbon management decisions based on atmospheric sampling/modeling techniques must account for the impact of fire CO2 emissions; a task that may prove very difficult for the foreseeable future. This paper addresses the variability of CO2 emissions from fires across the US, how these emissions compare to anthropogenic emissions of CO2 and Net Primary Productivity, and the potential implications for monitoring programs and policy development.ResultsAverage annual CO2 emissions from fires in the lower 48 (LOWER48) states from 2002–2006 are estimated to be 213 (± 50 std. dev.) Tg CO2 yr-1 and 80 (± 89 std. dev.) Tg CO2 yr-1 in Alaska. These estimates have significant interannual and spatial variability. Needleleaf forests in the Southeastern US and the Western US are the dominant source regions for US fire CO2 emissions. Very high emission years typically coincide with droughts, and climatic variability is a major driver of the high interannual and spatial variation in fire emissions. The amount of CO2 emitted from fires in the US is equivalent to 4–6% of anthropogenic emissions at the continental scale and, at the state-level, fire emissions of CO2 can, in some cases, exceed annual emissions of CO2 from fossil fuel usage.ConclusionThe CO2 released from fires, overall, is a small fraction of the estimated average annual Net Primary Productivity and, unlike fossil fuel CO2 emissions, the pulsed emissions of CO2 during fires are partially counterbalanced by uptake of CO2 by regrowing vegetation in the decades following fire. Changes in fire severity and frequency can, however, lead to net changes in atmospheric CO2 and the short-term impacts of fire emissions on monitoring, modeling, and carbon management policy are substantial.


Archive | 1998

Within-System Element Cycles, Input-Output Budgets, and Nutrient Limitation

Peter M. Vitousek; Lars O. Hedin; Pamela A. Matson; James H. Fownes; Jason C. Neff

Widely used conceptual models for controls on nutrient cycling and input-outputs budgets of forest ecosystems suggest that: (1) nutrient losses from ecosystems originate in the available nutrient pool in soil; (2) nutrients that limit plant production are retained tightly within those systems; (3) this retention leads to accumulation of the limiting nutrient(s), eventually to the point at which it no longer limits production; and (4) losses of nutrient(s) thereafter should reflect rates of nutrient input, rather than biotic demand In this chapter, we explore mechanisms that could constrain the accumulation of a limiting nutrient, and therefore could allow nutrient limitation to persist indefinitely. Possible mechanisms include episodic disturbance-related nutrient losses, closed element cycles, and losses of nutrients from sources other than the available inorganic pool of nutrients in soil. For the last mechanism, both a simple and a more complex model are used to show that losses of dissolved organic forms of a nutrient could constrain nutrient accumulation and permit nutrient limitation to persist indefintely. Emissions of nitrogen (N) trace gases produced during nitrification could have a similar effect. To the extent that losses of nutrients by these and related pathways are important, anthropogenic inputs of nutrients (particularly N) could alter forest ecosystems substantially, to an extent greater than standard conceptual models would allow.


Global Biogeochemical Cycles | 2000

Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models.

Elisabeth A. Holland; Jason C. Neff; Alan R. Townsend; Becky McKeown

Tropical ecosystems play a central role in the global carbon cycle. Large changes in tropical temperature over geologic time and the significant responses of tropical ecosystems to shorter-term variations such as El Nino/La Nina argue for a robust understanding of the temperature sensitivity of tropical decomposition. To examine the responsiveness of heterotrophic respiration to temperature, we measured rates of heterotrophic respiration from a wide range of tropical soils in a series of laboratory incubations. Under conditions of optimal soil water and nonlimiting substrate availability, heterotrophic respiration rose exponentially with rising temperature. The meanQ10measured across all temperature ranges in these short-term incubations was 2.37, but there was significant variation inQ10s across sites. The source of this variation could not be explained by soil carbon or nitrogen content, soil texture, site climate, or lignin to nitrogen ratio. At the beginning of the incubation, heterotrophic respiration increased exponentially with temperature for all sites, despite the fact that the fluxes differed by an order of magnitude. When substrate availability became limiting later in the incubation, the temperature response changed, and heterotrophic response declined above 35°C. The documented changes in temperature sensitivity with substrate availability argue for using temperature relationships developed under optimal conditions of substrate availability for models which include temperature regulation of heterotrophic respiration. To evaluate the significance of this natural variation in temperature control over decomposition, we used the Century ecosystem model gridded for the areas between the tropics of Cancer and Capricorn. These simulations used the mean and upper and lower confidence limits of the normalized exponential temperature response of our experimental studies. We found that systems with the lowest temperature sensitivity accumulated a total of 70 Pg more carbon in soil organic carbon and respired 5.5 Pg yr−1 less carbon compared to the systems with the highest sensitivity.


Biogeochemistry | 1994

Fluxes of nitrous oxide and methane from nitrogen-amended soils in a Colorado alpine ecosystem

Jason C. Neff; William D. Bowman; Elisabeth A. Holland; Melany C. Fisk; Steven K. Schmidt

In order to determine the effect of increased nitrogen inputs on fluxed of N2O and CH4 from alpine soils, we measured fluxes of these gases from fertilized and unfertilized soils in wet and dry alpine meadows. In the dry meadow, the addition of nitrogen resulted in a 22-fold increase in N2O emissions, while in the wet meadow, we observed a 45-fold increase in N2O emission rates. CH4 uptake in the dry meadow was reduced 52% by fertilization; however, net CH4 production occurred in all the wet meadow plots and emission rates were not significantly affected by fertilization. Net nitrification rates in the dry meadow were higher in fertilized plots than in non-fertilized plots throughout the growing season; net mineralization rates in fertilized dry meadow pots were higher than those in non-fertilized plots during the latter half of the growing season.


Remote Sensing | 2014

Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery

Katharine C. Kelsey; Jason C. Neff

Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9) at four offsets ([1,0], [1,1], [0,1], [1,−1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 × 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg∙ha−1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines.

Collaboration


Dive into the Jason C. Neff's collaboration.

Top Co-Authors

Avatar

Jennifer W. Harden

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kimberly P. Wickland

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Richard L. Reynolds

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

D. P. Fernandez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corey R. Lawrence

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nichole N. Barger

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Robert G. Striegl

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Thomas H. Painter

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge