Ashok Aspatwar
University of Tampere
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ashok Aspatwar.
BMC Molecular Biology | 2010
Ashok Aspatwar; Martti Tolvanen; Seppo Parkkila
BackgroundCarbonic anhydrases (CAs) are found in many organisms, in which they contribute to several important biological processes. The vertebrate α-CA family consists of 16 subfamilies, three of which (VIII, X and XI) consist of acatalytic proteins. These are named carbonic anhydrase related proteins (CARPs), and their inactivity is due to absence of one or more Zn-binding histidine residues. In this study, we analyzed and evaluated the distribution of genes encoding CARPs in different organisms using bioinformatic methods, and studied their expression in mouse tissues using immunohistochemistry and real-time quantitative PCR.ResultsWe collected 84 sequences, of which 22 came from novel or improved gene models which we created from genome data. The distribution of CARP VIII covers vertebrates and deuterostomes, and CARP X appears to be universal in the animal kingdom. CA10-like genes have had a separate history of duplications in the tetrapod and fish lineages. Our phylogenetic analysis showed that duplication of CA10 into CA11 has occurred only in tetrapods (found in mammals, frogs, and lizards), whereas an independent duplication of CA10 was found in fishes. We suggest the name CA10b for the second fish isoform. Immunohistochemical analysis showed a high expression level of CARP VIII in the mouse cerebellum, cerebrum, and also moderate expression in the lung, liver, salivary gland, and stomach. These results also demonstrated low expression in the colon, kidney, and Langerhans islets. CARP X was moderately expressed in the cerebral capillaries and the lung and very weakly in the stomach and heart. Positive signals for CARP XI were observed in the cerebellum, cerebrum, liver, stomach, small intestine, colon, kidney, and testis. In addition, the results of real-time quantitative PCR confirmed a wide distribution for the Car8 and Car11 mRNAs, whereas the expression of the Car10 mRNA was restricted to the frontal cortex, parietal cortex, cerebellum, midbrain, and eye.ConclusionsCARP sequences have been strongly conserved between different species, and all three CARPs show high expression in the mouse brain and CARP VIII is also expressed in several other tissues. These findings suggest an important functional role for these proteins in mammals.
Sub-cellular biochemistry | 2014
Ashok Aspatwar; Martti Tolvanen; Csaba Ortutay; Seppo Parkkila
The catalytically inactive isoforms of α-carbonic anhydrases are known as carbonic anhydrase related proteins (CARPs). The CARPs occur independently or as domains of other proteins in animals (both vertebrates and invertebrates) and viruses. The catalytic inactivity of CARPs is due to the lack of histidine residues required for the coordination of the zinc atom. The phylogenetic analysis shows that these proteins are highly conserved across the species. The three CARPs in vertebrates are known as CARP VIII, X and XI. CARPs orthologous to CARP VIII are found in deuterostome invertebrates, whereas protostomes only possess orthologs of CARP X. The CA-like domains of receptor-type protein tyrosine phosphatases (PTPR) are found only in PTPRG and PTPRZ. Most of these CARPs are predominantly expressed in central nervous system. Among the three vertebrate CA isoforms, CARP VIII is functionally associated with motor coordination in human, mouse and zebrafish and certain types of cancers in humans. Vertebrate expression studies show that CARP X is exclusively expressed in the brain. CARP XI is only found in tetrapods and is highly expressed in the central nervous system (CNS) of humans and mice and is also associated with several cancers. CARP VIII, PTPRZ and PTPRG have been shown to coordinate the function of other proteins by protein-protein interaction, and viral CARPs participate in attachment to host cells, but the precise biological function of CARPs X and XI is still unknown. The findings so far suggest many novel functions for the CARP subfamily, most likely related to binding to other proteins.
Current Pharmaceutical Design | 2010
Ashok Aspatwar; Martti Tolvanen; Csaba Ortutay; Seppo Parkkila
Mammalian carbonic anhydrase (α-CA) gene family comprises sixteen isoforms, thirteen of which are active isozymes and three isoforms lack classical CA activity of reversible hydration of CO(2) due to absence of one or more histidine residues required for CA catalytic activity. The inactive isoforms are known as carbonic anhydrase related proteins (CARPs) VIII, X and XI. Among these three, CARP VIII was reported first in 1990 from a mouse brain cDNA library and is well studied structurally as well as functionally compared to CARP X and XI. CARP VIII is an intriguing protein and is widely distributed and evolutionarily well-conserved across the species. It is mainly expressed in the Purkinje cells of cerebellum and in wide variety of other tissues both in mouse and human. CARP VIII has been linked to development of colorectal and lung cancers in humans, and overexpression of CARP VIII has been observed in several other cancers. A mutation in the CA8 gene has been associated with ataxia, mild mental retardation and quadrupedal gait in humans and with lifelong gait disorder in mice, suggesting an important role for CARP VIII in the brain. However, the precise function of CARP VIII is still an enigma. The present review article describes the previous data on CARP VIII, including its structure, role in neurodegeneration and cancer; and bioinformatic and expression analyses recently performed in our laboratory.
Human Molecular Genetics | 2013
Ashok Aspatwar; Martti Tolvanen; Eija Jokitalo; Mataleena Parikka; Csaba Ortutay; Sanna-Kaisa E. Harjula; Mika Rämet; Mauno Vihinen; Seppo Parkkila
Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2013
Ashok Aspatwar; Martti Tolvanen; Seppo Parkkila
The catalytically inactive isoforms of carbonic anhydrase (CAs) are known as CA-related proteins (CARPs) VIII, X, and XI. They have highly conserved amino acid sequences. These proteins are predominantly expressed in human and mouse brain, however, their precise roles are poorly known. CARP VIII is functionally associated with motor coordination in human and mouse. CARP X is more highly expressed in the pineal gland during night compared to the day time, suggesting a function for wake/sleep patterns. Phylogeny shows that CARP XI has emerged from CARP X. It is only found in tetrapods and is highly expressed in the central nervous system (CNS) of humans and is also associated with several cancers. Detailed analysis of CARPs is in progress in our laboratory to understand their role in normal physiology. We present a review of literature on CARPs and present some novel data on CARPs obtained in our laboratory.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2017
Ashok Aspatwar; Milka Marjut Hammarén; Sanni Koskinen; Bruno Vincent Luukinen; Harlan R. Barker; Fabrizio Carta; Claudiu T. Supuran; Mataleena Parikka; Seppo Parkkila
Abstract Inhibition of novel biological pathways in Mycobacterium tuberculosis (Mtb) creates the potential for alternative approaches for treating drug-resistant tuberculosis. In vitro studies have shown that dithiocarbamate-derived β-carbonic anhydrase (β-CA) inhibitors Fc14–594 A and Fc14–584B effectively inhibit the activity of Mtb β-CA enzymes. We screened the dithiocarbamates for toxicity, and studied the in vivo inhibitory effect of the least toxic inhibitor on M. marinum in a zebrafish model. In our toxicity screening, Fc14–584B emerged as the least toxic and showed minimal toxicity in 5-day-old larvae at 300 µM concentration. In vitro inhibition of M. marinum showed that both compounds inhibited growth at a concentration of 75 µM. In vivo inhibition studies using 300 µM Fc14–584B showed significant (p > .05) impairment of bacterial growth in zebrafish larvae at 6 days post infection. Our studies highlight the therapeutic potential of Fc14–584B as a β-CA inhibitor against Mtb, and that dithiocarbamate compounds may be developed into potent anti-tuberculosis drugs.
PLOS ONE | 2015
Ashok Aspatwar; Martti Tolvanen; Markus J. T. Ojanen; Harlan R. Barker; Anni Saralahti; Carina A. Bäuerlein; Csaba Ortutay; Peiwen Pan; Marianne Kuuslahti; Mataleena Parikka; Mika Rämet; Seppo Parkkila
Carbonic anhydrase related proteins (CARPs) X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder.
Bioorganic & Medicinal Chemistry | 2013
Martti Tolvanen; Csaba Ortutay; Harlan R. Barker; Ashok Aspatwar; Maarit Patrikainen; Seppo Parkkila
Carbonic anhydrase (CA) isozymes CA IV and CA XV are anchored on the extracellular cell surface via glycosylphosphatidylinositol (GPI) linkage. Analysis of evolution of these isozymes in vertebrates reveals an additional group of GPI-linked CAs, CA XVII, which has been lost in mammals. Our work resolves nomenclature issues in GPI-linked fish CAs. Review of expression data brings forth previously unreported tissue and cancer types in which human CA IV is expressed. Analysis of collective glycosylation patterns of GPI-linked CAs suggests functionally important regions on the protein surface.
Drug and Chemical Toxicology | 2017
Justina Kazokaitė; Ashok Aspatwar; Visvaldas Kairys; Seppo Parkkila; Daumantas Matulis
Abstract The toxic effects of two recently discovered inhibitors (VD12-09 and VD11-4-2) that selectively and with extraordinary strong, picomolar binding affinity to human carbonic anhydrase (CA) isoform IX were investigated on zebrafish embryonic development. CA IX has been recently introduced as an anticancer target since it is highly overexpressed in numerous human cancers but nearly absent in normal tissues. Morphological changes in zebrafish treated by the compounds were studied by light-field microscopy and histological analysis. Homology models of zebrafish CA II and CA IX were built to identify the conserved amino acid residues in the active site of zebrafish CAs. The toxicity studies here showed that the LC50 values at 120 hours post-fertilization (hpf) were 13 μM for VD12-09, 120 μM for VD11-4-2, and 9 μM for ethoxzolamide (EZA), a non-selective CA inhibitor commonly used as a drug in clinics. Thus, EZA was the most toxic of the three compounds. The zebrafish embryos exposed to LC50 doses of VD12-09 and VD11-4-2 showed fewer phenotypic abnormalities compared with the embryos exposed to the corresponding dose of EZA. Histochemical studies did not show any gross morphological changes in the embryos treated with VD12-09 and VD11-4-2 unlike EZA. The results of our study indicate that the compounds exhibited 10-fold lower toxicity and induced fewer side effects in zebrafish than EZA. Therefore, the exposure to VD11-4-2 and VD12-09 at concentrations below LC50 did not lead to deleterious effects on the zebrafish embryonic development and thus both inhibitors may be further developed as drugs.
PeerJ | 2017
Maarit Patrikainen; Martti Tolvanen; Ashok Aspatwar; Harlan R. Barker; Csaba Ortutay; Janne Jänis; Mikko Laitaoja; Vesa P. Hytönen; Latifeh Azizi; Prajwol Manandhar; Edit Jáger; Daniela Vullo; Sampo Kukkurainen; Mika Hilvo; Claudiu T. Supuran; Seppo Parkkila
Background Carbonic anhydrases (CAs) are ubiquitous, essential enzymes which catalyze the conversion of carbon dioxide and water to bicarbonate and H+ ions. Vertebrate genomes generally contain gene loci for 15–21 different CA isoforms, three of which are enzymatically inactive. CA VI is the only secretory protein of the enzymatically active isoforms. We discovered that non-mammalian CA VI contains a C-terminal pentraxin (PTX) domain, a novel combination for both CAs and PTXs. Methods We isolated and sequenced zebrafish (Danio rerio) CA VI cDNA, complete with the sequence coding for the PTX domain, and produced the recombinant CA VI–PTX protein. Enzymatic activity and kinetic parameters were measured with a stopped-flow instrument. Mass spectrometry, analytical gel filtration and dynamic light scattering were used for biophysical characterization. Sequence analyses and Bayesian phylogenetics were used in generating hypotheses of protein structure and CA VI gene evolution. A CA VI–PTX antiserum was produced, and the expression of CA VI protein was studied by immunohistochemistry. A knock-down zebrafish model was constructed, and larvae were observed up to five days post-fertilization (dpf). The expression of ca6 mRNA was quantitated by qRT-PCR in different developmental times in morphant and wild-type larvae and in different adult fish tissues. Finally, the swimming behavior of the morphant fish was compared to that of wild-type fish. Results The recombinant enzyme has a very high carbonate dehydratase activity. Sequencing confirms a 530-residue protein identical to one of the predicted proteins in the Ensembl database (ensembl.org). The protein is pentameric in solution, as studied by gel filtration and light scattering, presumably joined by the PTX domains. Mass spectrometry confirms the predicted signal peptide cleavage and disulfides, and N-glycosylation in two of the four observed glycosylation motifs. Molecular modeling of the pentamer is consistent with the modifications observed in mass spectrometry. Phylogenetics and sequence analyses provide a consistent hypothesis of the evolutionary history of domains associated with CA VI in mammals and non-mammals. Briefly, the evidence suggests that ancestral CA VI was a transmembrane protein, the exon coding for the cytoplasmic domain was replaced by one coding for PTX domain, and finally, in the therian lineage, the PTX-coding exon was lost. We knocked down CA VI expression in zebrafish embryos with antisense morpholino oligonucleotides, resulting in phenotype features of decreased buoyancy and swim bladder deflation in 4 dpf larvae. Discussion These findings provide novel insights into the evolution, structure, and function of this unique CA form.