Harlan R. Barker
University of Tampere
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harlan R. Barker.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2015
Reza Zolfaghari Emameh; Leo Syrjänen; Harlan R. Barker; Claudiu T. Supuran; Seppo Parkkila
Abstract Beta-carbonic anhydrases (β-CAs) have been recently reported to be present in many protozoan and metazoan species, whereas it is absent in mammals. In this review, we introduce β-CA from Drosophila melanogaster as a model enzyme for pesticide development. These enzymes can be targeted with various enzyme inhibitors, which can have deleterious effects on pathogenic and other harmful organisms. Therefore, β-CAs represent a new potential target to fight against Dipteran vectors and pests relevant to medicine, veterinary medicine, and agriculture.
Parasites & Vectors | 2014
Reza Zolfaghari Emameh; Harlan R. Barker; Martti Tolvanen; Csaba Ortutay; Seppo Parkkila
BackgroundDespite the high prevalence of parasitic infections, and their impact on global health and economy, the number of drugs available to treat them is extremely limited. As a result, the potential consequences of large-scale resistance to any existing drugs are a major concern. A number of recent investigations have focused on the effects of potential chemical inhibitors on bacterial and fungal carbonic anhydrases. Among the five classes of carbonic anhydrases (alpha, beta, gamma, delta and zeta), beta carbonic anhydrases have been reported in most species of bacteria, yeasts, algae, plants, and particular invertebrates (nematodes and insects). To date, there has been a lack of knowledge on the expression and molecular structure of beta carbonic anhydrases in metazoan (nematodes and arthropods) and protozoan species.MethodsHere, the identification of novel beta carbonic anhydrases was based on the presence of the highly-conserved amino acid sequence patterns of the active site. A phylogenetic tree was constructed based on codon-aligned DNA sequences. Subcellular localization prediction for each identified invertebrate beta carbonic anhydrase was performed using the TargetP webserver.ResultsWe verified a total of 75 beta carbonic anhydrase sequences in metazoan and protozoan species by proteome-wide searches and multiple sequence alignment. Of these, 52 were novel, and contained highly conserved amino acid residues, which are inferred to form the active site in beta carbonic anhydrases. Mitochondrial targeting peptide analysis revealed that 31 enzymes are predicted with mitochondrial localization; one was predicted to be a secretory enzyme, and the other 43 were predicted to have other undefined cellular localizations.ConclusionsThese investigations identified 75 beta carbonic anhydrases in metazoan and protozoan species, and among them there were 52 novel sequences that were not previously annotated as beta carbonic anhydrases. Our results will not only change the current information in proteomics and genomics databases, but will also suggest novel targets for drugs against parasites.
Experimental and Molecular Medicine | 2017
Harlan R. Barker; Marleena Aaltonen; Peiwen Pan; Maria Vähätupa; Pirkka Kaipiainen; Ulrike May; Stuart Prince; Hannele Uusitalo-Järvinen; Abdul Waheed; Silvia Pastorekova; William S. Sly; Seppo Parkkila; Tero A.H. Järvinen
Skin wound closure occurs when keratinocytes migrate from the edge of the wound and re-epithelialize the epidermis. Their migration takes place primarily before any vascularization is established, that is, under hypoxia, but relatively little is known regarding the factors that stimulate this migration. Hypoxia and an acidic environment are well-established stimuli for cancer cell migration. The carbonic anhydrases (CAs) contribute to tumor cell migration by generating an acidic environment through the conversion of carbon dioxide to bicarbonate and a proton. On this basis, we explored the possible role of CAs in tissue regeneration using mouse skin wound models. We show that the expression of mRNAs encoding CA isoforms IV and IX are increased (~25 × and 4 ×, respectively) during the wound hypoxic period (days 2–5) and that cells expressing CAs form a band-like structure beneath the migrating epidermis. RNA-Seq analysis suggested that the CA IV-specific signal in the wound is mainly derived from neutrophils. Due to the high level of induction of CA IV in the wound, we treated skin wounds locally with recombinant human CA IV enzyme. Recombinant CA IV significantly accelerated wound re-epithelialization. Thus, CA IV could contribute to wound healing by providing an acidic environment in which the migrating epidermis and neutrophils can survive and may offer novel opportunities to accelerate wound healing under compromised conditions.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2017
Ashok Aspatwar; Milka Marjut Hammarén; Sanni Koskinen; Bruno Vincent Luukinen; Harlan R. Barker; Fabrizio Carta; Claudiu T. Supuran; Mataleena Parikka; Seppo Parkkila
Abstract Inhibition of novel biological pathways in Mycobacterium tuberculosis (Mtb) creates the potential for alternative approaches for treating drug-resistant tuberculosis. In vitro studies have shown that dithiocarbamate-derived β-carbonic anhydrase (β-CA) inhibitors Fc14–594 A and Fc14–584B effectively inhibit the activity of Mtb β-CA enzymes. We screened the dithiocarbamates for toxicity, and studied the in vivo inhibitory effect of the least toxic inhibitor on M. marinum in a zebrafish model. In our toxicity screening, Fc14–584B emerged as the least toxic and showed minimal toxicity in 5-day-old larvae at 300 µM concentration. In vitro inhibition of M. marinum showed that both compounds inhibited growth at a concentration of 75 µM. In vivo inhibition studies using 300 µM Fc14–584B showed significant (p > .05) impairment of bacterial growth in zebrafish larvae at 6 days post infection. Our studies highlight the therapeutic potential of Fc14–584B as a β-CA inhibitor against Mtb, and that dithiocarbamate compounds may be developed into potent anti-tuberculosis drugs.
PLOS ONE | 2015
Ashok Aspatwar; Martti Tolvanen; Markus J. T. Ojanen; Harlan R. Barker; Anni Saralahti; Carina A. Bäuerlein; Csaba Ortutay; Peiwen Pan; Marianne Kuuslahti; Mataleena Parikka; Mika Rämet; Seppo Parkkila
Carbonic anhydrase related proteins (CARPs) X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder.
Parasites & Vectors | 2014
Reza Zolfaghari Emameh; Harlan R. Barker; Vesa P. Hytönen; Martti Tolvanen; Seppo Parkkila
BackgroundThe genomes of many insect and parasite species contain beta carbonic anhydrase (β-CA) protein coding sequences. The lack of β-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society.MethodsIn this study, we analyzed a multiple sequence alignment of 31 β-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for β-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis β-CAs as templates.ResultsSix β-CAs of insects and parasites and six β-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved β-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies.ConclusionsThe predicted mitochondrial localization of several β-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that β-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebrates.
Bioorganic & Medicinal Chemistry | 2013
Martti Tolvanen; Csaba Ortutay; Harlan R. Barker; Ashok Aspatwar; Maarit Patrikainen; Seppo Parkkila
Carbonic anhydrase (CA) isozymes CA IV and CA XV are anchored on the extracellular cell surface via glycosylphosphatidylinositol (GPI) linkage. Analysis of evolution of these isozymes in vertebrates reveals an additional group of GPI-linked CAs, CA XVII, which has been lost in mammals. Our work resolves nomenclature issues in GPI-linked fish CAs. Review of expression data brings forth previously unreported tissue and cancer types in which human CA IV is expressed. Analysis of collective glycosylation patterns of GPI-linked CAs suggests functionally important regions on the protein surface.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2016
Reza Zolfaghari Emameh; Harlan R. Barker; Leo Syrjänen; Linda Urbański; Claudiu T. Supuran; Seppo Parkkila
Abstract Carbonic anhydrases (CAs) are metalloenzymes, and classified into the evolutionarily distinct α, β, γ, δ, ζ, and η classes. α-CAs are present in many living organisms. β- and γ-CAs are expressed in most prokaryotes and eukaryotes, except for vertebrates. δ- and ζ-CAs are present in phytoplanktons, and η-CAs have been found in Plasmodium spp. Since the identification of α- and β-CAs in Caenorhabditis elegans, the nematode CAs have been considered as an emerging target in research focused on antiparasitic CA inhibitors. Despite the presence of α-CAs in both helminths and vertebrates, structural studies have revealed different kinetic and inhibition results. Moreover, lack of β-CAs in vertebrates makes this enzyme as an attractive target for inhibitory studies against helminthic infection. Some CA inhibitors, such as sulfonamides, have been evaluated against nematode CAs. This review article aims to present comprehensive information about the nematode CAs and their inhibitors as potential anthelminthic drugs.
PeerJ | 2017
Maarit Patrikainen; Martti Tolvanen; Ashok Aspatwar; Harlan R. Barker; Csaba Ortutay; Janne Jänis; Mikko Laitaoja; Vesa P. Hytönen; Latifeh Azizi; Prajwol Manandhar; Edit Jáger; Daniela Vullo; Sampo Kukkurainen; Mika Hilvo; Claudiu T. Supuran; Seppo Parkkila
Background Carbonic anhydrases (CAs) are ubiquitous, essential enzymes which catalyze the conversion of carbon dioxide and water to bicarbonate and H+ ions. Vertebrate genomes generally contain gene loci for 15–21 different CA isoforms, three of which are enzymatically inactive. CA VI is the only secretory protein of the enzymatically active isoforms. We discovered that non-mammalian CA VI contains a C-terminal pentraxin (PTX) domain, a novel combination for both CAs and PTXs. Methods We isolated and sequenced zebrafish (Danio rerio) CA VI cDNA, complete with the sequence coding for the PTX domain, and produced the recombinant CA VI–PTX protein. Enzymatic activity and kinetic parameters were measured with a stopped-flow instrument. Mass spectrometry, analytical gel filtration and dynamic light scattering were used for biophysical characterization. Sequence analyses and Bayesian phylogenetics were used in generating hypotheses of protein structure and CA VI gene evolution. A CA VI–PTX antiserum was produced, and the expression of CA VI protein was studied by immunohistochemistry. A knock-down zebrafish model was constructed, and larvae were observed up to five days post-fertilization (dpf). The expression of ca6 mRNA was quantitated by qRT-PCR in different developmental times in morphant and wild-type larvae and in different adult fish tissues. Finally, the swimming behavior of the morphant fish was compared to that of wild-type fish. Results The recombinant enzyme has a very high carbonate dehydratase activity. Sequencing confirms a 530-residue protein identical to one of the predicted proteins in the Ensembl database (ensembl.org). The protein is pentameric in solution, as studied by gel filtration and light scattering, presumably joined by the PTX domains. Mass spectrometry confirms the predicted signal peptide cleavage and disulfides, and N-glycosylation in two of the four observed glycosylation motifs. Molecular modeling of the pentamer is consistent with the modifications observed in mass spectrometry. Phylogenetics and sequence analyses provide a consistent hypothesis of the evolutionary history of domains associated with CA VI in mammals and non-mammals. Briefly, the evidence suggests that ancestral CA VI was a transmembrane protein, the exon coding for the cytoplasmic domain was replaced by one coding for PTX domain, and finally, in the therian lineage, the PTX-coding exon was lost. We knocked down CA VI expression in zebrafish embryos with antisense morpholino oligonucleotides, resulting in phenotype features of decreased buoyancy and swim bladder deflation in 4 dpf larvae. Discussion These findings provide novel insights into the evolution, structure, and function of this unique CA form.
Transgenic Research | 2016
Maarit Patrikainen; Peiwen Pan; Harlan R. Barker; Seppo Parkkila
From birth, the respiratory tract mucosa is exposed to various chemical, physical, and microbiological stress factors. Efficient defense mechanisms and strictly regulated renewal systems in the mucosa are thus required. Carbonic anhydrase VI (CA VI) is the only secreted isoenzyme of the α-CA gene family. It is transported in high concentrations in saliva and milk into the alimentary tract where it contributes to optimal pH homeostasis. Earlier study of transcriptomic responses of Car6−/− mice has shown changes in the response to oxidative stress and brown fat cell differentiation in the submandibular gland. It has been suggested that CA VI delivered to the mucosal surface of the bronchiolar epithelium is an essential factor in defense and renewal of the lining epithelium. In this study, the transcriptional effects of CA VI deficiency were investigated in both trachea and lung of Car6−/− mice using a cDNA microarray analysis. Functional clustering of the results indicated significant changes of gene transcription in the lower airways. The altered biological processes included antigen transport by M-cells, potassium transport, muscle contraction, and thyroid hormone synthesis. Immunohistochemical staining confirmed the absence of CA VI in the submandibular gland of Car6−/− mice. Immunostaining of the trachea and lung samples revealed no differences between the knockout and wild type groups nor were any morphological changes observed. The present findings can help us to recognize novel functions for CA VI—one of the major protein constituents of saliva and milk.