Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashraf Malhas is active.

Publication


Featured researches published by Ashraf Malhas.


Journal of Cell Biology | 2007

Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression

Ashraf Malhas; Chiu Fan Lee; Rebecca Sanders; Nigel J. Saunders; David J. Vaux

Radial organization of nuclei with peripheral gene-poor chromosomes and central gene-rich chromosomes is common and could depend on the nuclear boundary as a scaffold or position marker. To test this, we studied the role of the ubiquitous nuclear envelope (NE) component lamin B1 in NE stability, chromosome territory position, and gene expression. The stability of the lamin B1 lamina is dependent on lamin endoproteolysis (by Rce1) but not carboxymethylation (by Icmt), whereas lamin C lamina stability is not affected by the loss of full-length lamin B1 or its processing. Comparison of wild-type murine fibroblasts with fibroblasts lacking full-length lamin B1, or defective in CAAX processing, identified genes that depend on a stable processed lamin B1 lamina for normal expression. We also demonstrate that the position of mouse chromosome 18 but not 19 is dependent on such a stable nuclear lamina. The results implicate processed lamin B1 in the control of gene expression as well as chromosome position.


Journal of Cell Biology | 2009

Lamin B1 controls oxidative stress responses via Oct-1

Ashraf Malhas; Chiu Fan Lee; David J. Vaux

Interaction of lamins with chromatin and transcription factors regulate transcription. Oct-1 has previously been shown to colocalize partly with B-type lamins and is essential for transcriptional regulation of oxidative stress response genes. Using sequential extraction, co-immunoprecipitation (IP), fluorescence loss in photobleaching, and fluorescence resonance energy transfer, we confirm Oct-1–lamin B1 association at the nuclear periphery and show that this association is lost in Lmnb1Δ/Δ cells. We show that several Oct-1–dependent genes, including a subset involved in oxidative stress response, are dysregulated in Lmnb1Δ/Δ cells. Electrophoretic mobility shift assay and chromatin IP reveal that Oct-1 binds to the putative octamer-binding sequences of the dysregulated genes and that this activity is increased in cells lacking functional lamin B1. Like Oct1−/− cells, Lmnb1Δ/Δ cells have elevated levels of reactive oxygen species and are more susceptible to oxidative stress. Sequestration of Oct-1 at the nuclear periphery by lamin B1 may be a mechanism by which the nuclear envelope can regulate gene expression and contribute to the cellular response to stress, development, and aging.


Human Molecular Genetics | 2011

Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies.

Winnok H. De Vos; Frederik Houben; Miriam Kamps; Ashraf Malhas; Fons Verheyen; Juliën Cox; Erik M. M. Manders; Valerie L.R.M. Verstraeten; Maurice A.M. van Steensel; Carlo Marcelis; Arthur van den Wijngaard; David J. Vaux; Frans C. S. Ramaekers; Jos L. V. Broers

The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C. These ruptures, which were absent in normal fibroblasts, could be mimicked by selective knockdown as well as knockout of LMNA and were accompanied by the loss of cellular compartmentalization. This was demonstrated by the influx of cytoplasmic transcription factor RelA and regulatory protein Cyclin B1 into the nucleus, and efflux of nuclear transcription factor OCT1 and nuclear structures containing the promyelocytic leukemia (PML) tumour suppressor protein to the cytoplasm. While recovery of enhanced yellow fluorescent protein-tagged nuclear localization signal in the nucleus demonstrated restoration of nuclear membrane integrity, part of the mobile PML structures became permanently translocated to the cytoplasm. These satellite PML structures were devoid of the typical PML body components, such as DAXX, SP100 or SUMO1. Our data suggest that nuclear rupture and loss of compartmentalization may add to cellular dysfunction and disease development in various laminopathies.


Journal of Cell Biology | 2011

A novel role for BRCA1 in regulating breast cancer cell spreading and motility.

Elisabeth D. Coene; Catarina Gadelha; N. S. White; Ashraf Malhas; Benjamin Thomas; Michael Shaw; David J. Vaux

BRCA1 interacts with ERM proteins at leading edges and focal adhesion sites and modulates motility via its ubiquitin ligase activity.


Cell Cycle | 2010

The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation

Ashraf Malhas; Nigel J. Saunders; David J. Vaux

The nuclear envelope can regulate gene expression through its interaction with chromatin and by the sequestration of specific transcription factors. In this study, we show that such regulation can be achieved via microRNA regulation. We identify a set of miRNAs that are dysregulated in the absence of a fully functional nuclear lamina. We then focus on miRNA-31 and experimentally confirm its targets. The target set identified is significantly enriched in genes involved in controlling progress through the cell cycle such as Cdkn2a. Normalizing miRNA-31 levels, either using a specific inhibitor or by restoration of the nuclear lamina, also normalizes cell cycle distribution and cell proliferation rates. We show that the 3’UTR of p16Ink4a/p19Arf has a functional miRNA-31 binding site which contributes to the observed regulation of cell cycle progression. Our findings are the first demonstration that the nuclear envelope can control gene expression by regulating specific miRNA levels, and that miRNA-31 is involved in the regulation of cell proliferation and progress through the cell cycle at least in part by regulating the levels of p16Ink4a/p19Arf.


Journal of Cell Science | 2011

The induction of a nucleoplasmic reticulum by prelamin A accumulation requires CTP:phosphocholine cytidylyltransferase-α

Chris N. Goulbourne; Ashraf Malhas; David J. Vaux

Farnesylated prelamin A accumulates when the final endoproteolytic maturation of the protein fails to occur and causes a dysmorphic nuclear phenotype; however, the morphology and mechanisms of biogenesis of these changes remain unclear. We show here that acute prelamin A accumulation after reduction in the activity of the ZMPSTE24 endoprotease by short interfering RNA knockdown, results in the generation of a complex nucleoplasmic reticulum that depends for its formation on the enzyme CTP:phosphocholine-cytidylyltransferase-α (CCT-α, also known as choline-phosphate cytidylyltransferase A). This structure can form during interphase, confirming that it is independent of mitosis and therefore not a consequence of disordered nuclear envelope assembly. Serial-section dual-axis electron tomography reveals that these invaginations can take two forms: one in which the inner nuclear membrane infolds alone with an inter membrane space interior, and the other in which an invagination of both nuclear membranes occurs, enclosing a cytoplasmic core. Both types of invagination can co-exist in one nucleus and both are frequently studded with nuclear pore complexes (NPC), which reduces NPC abundance on the nuclear surface.


PLOS Genetics | 2012

Lamin B1 Polymorphism Influences Morphology of the Nuclear Envelope, Cell Cycle Progression, and Risk of Neural Tube Defects in Mice

Sandra C.P. De Castro; Ashraf Malhas; Kit-Yi Leung; Peter Gustavsson; David J. Vaux; Andrew J. Copp; Nicholas D. E. Greene

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects whose complex multigenic causation has hampered efforts to delineate their molecular basis. The effect of putative modifier genes in determining NTD susceptibility may be investigated in mouse models, particularly those that display partial penetrance such as curly tail, a strain in which NTDs result from a hypomorphic allele of the grainyhead-like-3 gene. Through proteomic analysis, we found that the curly tail genetic background harbours a polymorphic variant of lamin B1, lacking one of a series of nine glutamic acid residues. Lamins are intermediate filament proteins of the nuclear lamina with multiple functions that influence nuclear structure, cell cycle properties, and transcriptional regulation. Fluorescence loss in photobleaching showed that the variant lamin B1 exhibited reduced stability in the nuclear lamina. Genetic analysis demonstrated that the variant also affects neural tube closure: the frequency of spina bifida and anencephaly was reduced three-fold when wild-type lamin B1 was bred into the curly tail strain background. Cultured fibroblasts expressing variant lamin B1 show significantly increased nuclear dysmorphology and diminished proliferative capacity, as well as premature senescence, associated with reduced expression of cyclins and Smc2, and increased expression of p16. The cellular basis of spinal NTDs in curly tail embryos involves a proliferation defect localised to the hindgut epithelium, and S-phase progression was diminished in the hindgut of embryos expressing variant lamin B1. These observations indicate a mechanistic link between altered lamin B1 function, exacerbation of the Grhl3-mediated cell proliferation defect, and enhanced susceptibility to NTDs. We conclude that lamin B1 is a modifier gene of major effect for NTDs resulting from loss of Grhl3 function, a role that is likely mediated via the key function of lamin B1 in maintaining integrity of the nuclear envelope and ensuring normal cell cycle progression.


Ultramicroscopy | 2014

Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells.

Christoph Hagen; Stephan Werner; Susana Carregal-Romero; Ashraf Malhas; Barbara G. Klupp; Peter Guttmann; Stefan Rehbein; Katja Henzler; Thomas C. Mettenleiter; David J. Vaux; Wolfgang J. Parak; Gerd Schneider; Kay Grünewald

Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their egress from the host cell nucleus, morphologically similar structures found in laminopathies and after chemical induction were investigated as a potentially more easily accessible model system. For example, anti-retroviral protease inhibitors like Saquinavir also induce invaginations of the nuclear membranes. With the help of newly designed multimodal nanoparticles as alignment and correlation markers, and by optimizing fluorescence cryo-microscopy data acquisition, an elaborate three-dimensional network of nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated rabbit kidney cells expressing a fluorescently labeled inner nuclear membrane protein. In part of the protease inhibitor-treated samples, nuclei exhibited dramatic ultrastructural changes indicative of programmed cell death/apoptosis. This unexpected observation highlights another unique feature of soft X-ray microscopy, i.e. high absorption contrast information not relying on labeled cellular components, at a 3D resolution of approximately 40 nm (half-pitch) and through a sample thickness of several micrometers. These properties make it a valuable part of the cell biology imaging toolbox to visualize the cellular ultrastructure in its completeness.


Biochemical Society Transactions | 2011

The nuclear envelope and its involvement in cellular stress responses

Ashraf Malhas; David J. Vaux

The nuclear envelope is not only important for the structural integrity of the nucleus, but also involved in a number of cellular functions. It has been shown to be important for maintaining and controlling chromatin organization, sequestering transcription factors, replication, transcription and signalling. The nuclear envelope is thus important for development and differentiation, and some of its components are essential for cell viability. Among the many functions which are emerging for the nuclear envelope is its involvement in protecting the cell against different types of cellular stress. In the present paper, we review key findings which describe the roles of nuclear envelope components in responses to common types of stress conditions.


Birth Defects Research Part A-clinical and Molecular Teratology | 2013

Is LMNB1 a Susceptibility Gene for Neural Tube Defects in Humans

Alexis Robinson; Darren Partridge; Ashraf Malhas; Sandra C.P. De Castro; Peter Gustavsson; Dominic Thompson; David J. Vaux; Andrew J. Copp; Philip Stanier; Alexander G. Bassuk; Nicholas D.E. Greene

BACKGROUND Lamins are intermediate filament proteins that form a major component of the nuclear lamina, a protein complex at the surface of the inner nuclear membrane. Numerous clinically diverse conditions, termed laminopathies, have been found to result from mutation of LMNA. In contrast, coding or loss of function mutations of LMNB1, encoding lamin B1, have not been identified in human disease. In mice, polymorphism in Lmnb1 has been shown to modify risk of neural tube defects (NTDs), malformations of the central nervous system that result from incomplete closure of the neural folds. METHODS Mutation analysis by DNA sequencing was performed on all exons of LMNB1 in 239 samples from patients with NTDs from the United Kingdom, Sweden, and United States. Possible functional effects of missense variants were analyzed by bioinformatics prediction and fluorescence in photobleaching. RESULTS In NTD patients, we identified two unique missense variants that were predicted to disrupt protein structure/function and represent putative contributory mutations. Fluorescence loss in photobleaching analysis showed that the A436T variant compromised stability of lamin B1 interaction within the lamina. CONCLUSION The genetic basis of human NTDs appears highly heterogenous with possible involvement of multiple predisposing genes. We hypothesize that rare variants of LMNB1 may contribute to susceptibility to NTDs. Birth Defects Research (Part A) 97:398–402, 2013.

Collaboration


Dive into the Ashraf Malhas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Copp

University College London

View shared research outputs
Top Co-Authors

Avatar

Chiu Fan Lee

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Robinson

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge