David J. Vaux
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Vaux.
Journal of Cell Biology | 2001
Michael Hollinshead; Gaener Rodger; Henriette Van Eijl; Mansun Law; Ruth Hollinshead; David J. Vaux; Geoffrey L. Smith
Vaccinia virus (VV) egress has been studied using confocal, video, and electron microscopy. Previously, intracellular-enveloped virus (IEV) particles were proposed to induce the polymerization of actin tails, which propel IEV particles to the cell surface. However, data presented support an alternative model in which microtubules transport virions to the cell surface and actin tails form beneath cell-associated enveloped virus (CEV) particles at the cell surface. Thus, VV is unique in using both microtubules and actin filaments for egress. The following data support this proposal. (a) Microscopy detected actin tails at the surface but not the center of cells. (b) VV mutants lacking the A33R, A34R, or A36R proteins are unable to induce actin tail formation but produce CEV and extracellular-enveloped virus. (c) CEV formation is inhibited by nocodazole but not cytochalasin D or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP1). (d) IEV particles tagged with the enhanced green fluorescent protein fused to the VV B5R protein moved inside cells at 60 μm/min. This movement was stop-start, was along defined pathways, and was inhibited reversibly by nocodazole. This velocity was 20-fold greater than VV movement on actin tails and consonant with the rate of movement of organelles along microtubules.
Journal of Cell Biology | 2007
Ashraf Malhas; Chiu Fan Lee; Rebecca Sanders; Nigel J. Saunders; David J. Vaux
Radial organization of nuclei with peripheral gene-poor chromosomes and central gene-rich chromosomes is common and could depend on the nuclear boundary as a scaffold or position marker. To test this, we studied the role of the ubiquitous nuclear envelope (NE) component lamin B1 in NE stability, chromosome territory position, and gene expression. The stability of the lamin B1 lamina is dependent on lamin endoproteolysis (by Rce1) but not carboxymethylation (by Icmt), whereas lamin C lamina stability is not affected by the loss of full-length lamin B1 or its processing. Comparison of wild-type murine fibroblasts with fibroblasts lacking full-length lamin B1, or defective in CAAX processing, identified genes that depend on a stable processed lamin B1 lamina for normal expression. We also demonstrate that the position of mouse chromosome 18 but not 19 is dependent on such a stable nuclear lamina. The results implicate processed lamin B1 in the control of gene expression as well as chromosome position.
Journal of Cell Biology | 2009
Ashraf Malhas; Chiu Fan Lee; David J. Vaux
Interaction of lamins with chromatin and transcription factors regulate transcription. Oct-1 has previously been shown to colocalize partly with B-type lamins and is essential for transcriptional regulation of oxidative stress response genes. Using sequential extraction, co-immunoprecipitation (IP), fluorescence loss in photobleaching, and fluorescence resonance energy transfer, we confirm Oct-1–lamin B1 association at the nuclear periphery and show that this association is lost in Lmnb1Δ/Δ cells. We show that several Oct-1–dependent genes, including a subset involved in oxidative stress response, are dysregulated in Lmnb1Δ/Δ cells. Electrophoretic mobility shift assay and chromatin IP reveal that Oct-1 binds to the putative octamer-binding sequences of the dysregulated genes and that this activity is increased in cells lacking functional lamin B1. Like Oct1−/− cells, Lmnb1Δ/Δ cells have elevated levels of reactive oxygen species and are more susceptible to oxidative stress. Sequestration of Oct-1 at the nuclear periphery by lamin B1 may be a mechanism by which the nuclear envelope can regulate gene expression and contribute to the cellular response to stress, development, and aging.
Human Molecular Genetics | 2011
Winnok H. De Vos; Frederik Houben; Miriam Kamps; Ashraf Malhas; Fons Verheyen; Juliën Cox; Erik M. M. Manders; Valerie L.R.M. Verstraeten; Maurice A.M. van Steensel; Carlo Marcelis; Arthur van den Wijngaard; David J. Vaux; Frans C. S. Ramaekers; Jos L. V. Broers
The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C. These ruptures, which were absent in normal fibroblasts, could be mimicked by selective knockdown as well as knockout of LMNA and were accompanied by the loss of cellular compartmentalization. This was demonstrated by the influx of cytoplasmic transcription factor RelA and regulatory protein Cyclin B1 into the nucleus, and efflux of nuclear transcription factor OCT1 and nuclear structures containing the promyelocytic leukemia (PML) tumour suppressor protein to the cytoplasm. While recovery of enhanced yellow fluorescent protein-tagged nuclear localization signal in the nucleus demonstrated restoration of nuclear membrane integrity, part of the mobile PML structures became permanently translocated to the cytoplasm. These satellite PML structures were devoid of the typical PML body components, such as DAXX, SP100 or SUMO1. Our data suggest that nuclear rupture and loss of compartmentalization may add to cellular dysfunction and disease development in various laminopathies.
Journal of Biological Chemistry | 2003
Peter Wonerow; Andrew C. Pearce; David J. Vaux; Steve P. Watson
The interaction of fibrinogen with the integrin αIIbβ3 plays a crucial role in platelet adhesion and platelet activation leading to the generation of intracellular signals that nucleate the reorganization of the cytoskeleton. Presently, we have only a limited understanding of the signaling cascades and effector proteins through which changes in the cytoskeletal architecture are mediated. The present study identifies phospholipase Cγ2 (PLCγ2) as an important target of the Src-dependent signaling cascade regulated by αIIbβ3. Real time phasecontrast microscopy is used to show that formation of filopodia and lamellapodia in murine platelets on a fibrinogen surface is dramatically inhibited in the absence of PLCγ2. Significantly, the formation of these structures is mediated by Ca2+ elevation and activation of protein kinase C, both directly regulated by PLC activity. With the involvement of Syk, SLP-76, and Btk, αIIbβ3-induced PLCγ2 activation partly overlaps with the pathway used by the collagen receptor glycoprotein VI. Important differences, however, exist between the two signaling cascades in that activation of PLCγ2 by αIIbβ3 is unaltered in murine platelets, which lack the FcR γ-chain or the adaptor LAT, but is abolished in the presence of cytochalasin D. Therefore, PLCγ2 plays not only a crucial role in activation of αIIbβ3 by collagen receptors but also in αIIbβ3-mediated responses.
Journal of Cell Biology | 2003
Christopher P. Maske; Michael Hollinshead; Niall C. Higbee; Martin O. Bergo; Stephen G. Young; David J. Vaux
The mammalian nuclear lamina protein lamin B1 is posttranslationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxyl-terminal CAAX motif. In this work, we demonstrate that the CAAX endoprotease Rce1 is required for lamin B1 endoproteolysis, demonstrate an independent pool of proteolyzed but nonmethylated lamin B1, as well as fully processed lamin B1, in interphase nuclei, and show a role for methylation in the organization of lamin B1 into domains of the nuclear lamina. Deficiency in the endoproteolysis or methylation of lamin B1 results in loss of integrity and deformity of the nuclear lamina. These data show that the organization of the nuclear envelope and lamina is dependent on a mechanism involving the methylation of lamin B1, and they identify a potential mechanism of laminopathy involving a B-type lamin.
Journal of Histochemistry and Cytochemistry | 1997
Michael Hollinshead; Jeremy Sanderson; David J. Vaux
The mitochondrial matrix contains endogenously biotinylated proteins. These proteins can cause unexpected background signal when biotin–avidin- or biotin–streptavidin-based detection systems are used in immunocytochemistry. Here we show that this reactivity can be deliberately exploited, using a simple anti-biotin reagent, to obtain strong and highly specific labeling of mitochondria by both light and electron microscopy. The signal is substantially stronger than when either avidin or streptavidin is used to detect the endogenous biotin. These results confirm the accessibility of protein-bound endogenous biotin to exogenous probes, and localize the biotinylated enzymes to the mitochondrial matrix. (J Histochem Cytochem 45:1053–1057, 1997)
Journal of Cell Biology | 2011
Elisabeth D. Coene; Catarina Gadelha; N. S. White; Ashraf Malhas; Benjamin Thomas; Michael Shaw; David J. Vaux
BRCA1 interacts with ERM proteins at leading edges and focal adhesion sites and modulates motility via its ubiquitin ligase activity.
Cell Cycle | 2010
Ashraf Malhas; Nigel J. Saunders; David J. Vaux
The nuclear envelope can regulate gene expression through its interaction with chromatin and by the sequestration of specific transcription factors. In this study, we show that such regulation can be achieved via microRNA regulation. We identify a set of miRNAs that are dysregulated in the absence of a fully functional nuclear lamina. We then focus on miRNA-31 and experimentally confirm its targets. The target set identified is significantly enriched in genes involved in controlling progress through the cell cycle such as Cdkn2a. Normalizing miRNA-31 levels, either using a specific inhibitor or by restoration of the nuclear lamina, also normalizes cell cycle distribution and cell proliferation rates. We show that the 3’UTR of p16Ink4a/p19Arf has a functional miRNA-31 binding site which contributes to the observed regulation of cell cycle progression. Our findings are the first demonstration that the nuclear envelope can control gene expression by regulating specific miRNA levels, and that miRNA-31 is involved in the regulation of cell proliferation and progress through the cell cycle at least in part by regulating the levels of p16Ink4a/p19Arf.
Journal of Lipid Research | 2012
Brandon S. J. Davies; Chris N. Goulbourne; Richard H. Barnes; Kirsten A. Turlo; Peter Gin; Sue Vaughan; David J. Vaux; André Bensadoun; Anne P. Beigneux; Loren G. Fong; Stephen G. Young
Lipoprotein lipase (LPL) is secreted into the interstitial spaces by adipocytes and myocytes but then must be transported to the capillary lumen by GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells. The mechanism by which GPIHBP1 and LPL move across endothelial cells remains unclear. We asked whether the transport of GPIHBP1 and LPL across endothelial cells was uni- or bidirectional. We also asked whether GPIHBP1 and LPL are transported across cells in vesicles and whether this transport process requires caveolin-1. The movement of GPIHBP1 and LPL across cultured endothelial cells was bidirectional. Also, GPIHBP1 moved bidirectionally across capillary endothelial cells in live mice. The transport of LPL across endothelial cells was inhibited by dynasore and genistein, consistent with a vesicular transport process. Also, transmission electron microscopy (EM) and dual-axis EM tomography revealed GPIHBP1 and LPL in invaginations of the plasma membrane and in vesicles. The movement of GPIHBP1 across capillary endothelial cells was efficient in the absence of caveolin-1, and there was no defect in the internalization of LPL by caveolin-1-deficient endothelial cells in culture. Our studies show that GPIHBP1 and LPL move bidirectionally across endothelial cells in vesicles and that transport is efficient even when caveolin-1 is absent.