Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashutosh Chaudhry is active.

Publication


Featured researches published by Ashutosh Chaudhry.


Nature | 2010

Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate

Ye Zheng; Steven Z. Josefowicz; Ashutosh Chaudhry; Xiao P. Peng; Katherine Forbush; Alexander Y. Rudensky

Immune homeostasis is dependent on tight control over the size of a population of regulatory T (Treg) cells capable of suppressing over-exuberant immune responses. The Treg cell subset is comprised of cells that commit to the Treg lineage by upregulating the transcription factor Foxp3 either in the thymus (tTreg) or in the periphery (iTreg). Considering a central role for Foxp3 in Treg cell differentiation and function, we proposed that conserved non-coding DNA sequence (CNS) elements at the Foxp3 locus encode information defining the size, composition and stability of the Treg cell population. Here we describe the function of three Foxp3 CNS elements (CNS1–3) in Treg cell fate determination in mice. The pioneer element CNS3, which acts to potently increase the frequency of Treg cells generated in the thymus and the periphery, binds c-Rel in in vitro assays. In contrast, CNS1, which contains a TGF-β–NFAT response element, is superfluous for tTreg cell differentiation, but has a prominent role in iTreg cell generation in gut-associated lymphoid tissues. CNS2, although dispensable for Foxp3 induction, is required for Foxp3 expression in the progeny of dividing Treg cells. Foxp3 binds to CNS2 in a Cbf-β–Runx1 and CpG DNA demethylation-dependent manner, suggesting that Foxp3 recruitment to this ‘cellular memory module’ facilitates the heritable maintenance of the active state of the Foxp3 locus and, therefore, Treg lineage stability. Together, our studies demonstrate that the composition, size and maintenance of the Treg cell population are controlled by Foxp3 CNS elements engaged in response to distinct cell-extrinsic or -intrinsic cues.


Science | 2009

CD4+ Regulatory T Cells Control TH17 Responses in a Stat3-Dependent Manner

Ashutosh Chaudhry; Dipayan Rudra; Piper M. Treuting; Robert M. Samstein; Yuqiong Liang; Arnold Kas; Alexander Y. Rudensky

Outfoxing Immune Excess Immune responses are kept in check by Foxp3-expressing CD4+-regulatory T cells (Tregs) through a variety of mechanisms. Expression of specific transcription factors directs Treg responses into distinct T helper cell lineages; however, the transcription factors that regulate particular helper lineages have not been completely characterized. Chaudhry et al. (p. 986, published online 1 October) show that the transcription factor Stat3, that is required for the initial differentiation of TH17-effector T cells, is also required for Treg cell-mediated suppression of TH17-mediated immune responses. Mice carrying a Treg cellspecific deletion in Stat3 succumb to an intestinal inflammatory disease driven by uncontrolled TH17 responses. Thus, different classes of immune responses can result from the expression of helper lineage–specific transcription factors. Suppressor T cells regulate different classes of immune responses through induction of specific transcription factors. Distinct classes of protective immunity are guided by activation of STAT transcription factor family members in response to environmental cues. CD4+ regulatory T cells (Tregs) suppress excessive immune responses, and their deficiency results in a lethal, multi-organ autoimmune syndrome characterized by T helper 1 (TH1) and T helper 2 (TH2) CD4+ T cell–dominated lesions. Here we show that pathogenic TH17 responses in mice are also restrained by Tregs. This suppression was lost upon Treg-specific ablation of Stat3, a transcription factor critical for TH17 differentiation, and resulted in the development of a fatal intestinal inflammation. These findings suggest that Tregs adapt to their environment by engaging distinct effector response–specific suppression modalities upon activation of STAT proteins that direct the corresponding class of the immune response.


Nature | 2009

Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses

Ye Zheng; Ashutosh Chaudhry; Arnold Kas; Paul deRoos; Jeong M. Kim; Tin-Tin Chu; Lynn M. Corcoran; Piper M. Treuting; Ulf Klein; Alexander Y. Rudensky

In the course of infection or autoimmunity, particular transcription factors orchestrate the differentiation of TH1, TH2 or TH17 effector cells, the responses of which are limited by a distinct lineage of suppressive regulatory T cells (Treg). Treg cell differentiation and function are guided by the transcription factor Foxp3, and their deficiency due to mutations in Foxp3 results in aggressive fatal autoimmune disease associated with sharply augmented TH1 and TH2 cytokine production. Recent studies suggested that Foxp3 regulates the bulk of the Foxp3-dependent transcriptional program indirectly through a set of transcriptional regulators serving as direct Foxp3 targets. Here we show that in mouse Treg cells, high amounts of interferon regulatory factor-4 (IRF4), a transcription factor essential for TH2 effector cell differentiation, is dependent on Foxp3 expression. We proposed that IRF4 expression endows Treg cells with the ability to suppress TH2 responses. Indeed, ablation of a conditional Irf4 allele in Treg cells resulted in selective dysregulation of TH2 responses, IL4-dependent immunoglobulin isotype production, and tissue lesions with pronounced plasma cell infiltration, in contrast to the mononuclear-cell-dominated pathology typical of mice lacking Treg cells. Our results indicate that Treg cells use components of the transcriptional machinery, promoting a particular type of effector CD4+ T cell differentiation, to efficiently restrain the corresponding type of the immune response.


Immunity | 2009

Foxp3-Dependent MicroRNA155 Confers Competitive Fitness to Regulatory T Cells by Targeting SOCS1 Protein

Li-Fan Lu; To-Ha Thai; Dinis Pedro Calado; Ashutosh Chaudhry; Masato Kubo; Kentaro Tanaka; Gabriel B. Loeb; Hana Lee; Akihiko Yoshimura; Klaus Rajewsky; Alexander Y. Rudensky

Foxp3(+) regulatory T (Treg) cells limit pathogenic immune responses to self-antigens and foreign antigens. An essential role for microRNA (miRNA) in the maintenance and function of Treg cells, revealed by the Treg cell-specific Dicer ablation, raised a question as to a specific miRNA contribution. We found that Foxp3 controlled the elevated miR155 expression required for maintaining Treg cell proliferative activity and numbers under nonlymphopenic conditions. Moreover, miR155 deficiency in Treg cells resulted in increased suppressor of cytokine signaling 1 (SOCS1) expression accompanied by impaired activation of signal transducer and activator of transcription 5 (STAT5) transcription factor in response to limiting amounts of interleukin-2. Our studies suggest that Foxp3-dependent regulation of miR155 maintains competitive fitness of Treg cell subsets by targeting SOCS1, and they provide experimental support for a proposed role for miRNAs in ensuring the robustness of cellular phenotypes.


Cell | 2010

Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses

Li-Fan Lu; Mark P. Boldin; Ashutosh Chaudhry; Ling Li Lin; Konstantin D. Taganov; Toshikatsu Hanada; Akihiko Yoshimura; David Baltimore; Alexander Y. Rudensky

Foxp3(+) regulatory T (Treg) cells maintain immune homeostasis by limiting different types of inflammatory responses. Here, we report that miR-146a, one of the miRNAs prevalently expressed in Treg cells, is critical for their suppressor function. The deficiency of miR-146a in Treg cells resulted in a breakdown of immunological tolerance manifested in fatalxa0IFNγ-dependent immune-mediated lesions inxa0a variety of organs. This was likely due to augmented expression and activation of signal transducer and activator transcription 1 (Stat1), a direct target of miR-146a. Likewise, heightened Stat1 activation inxa0Treg cells subjected to a selective ablation of SOCS1, a key negative regulator of Stat1 phosphorylation downstream of the IFNγ receptor, was associated with analogous Th1-mediated pathology. Our results suggest that specific aspects of Treg suppressor function are controlled by a single miRNAxa0and that an optimal range of Stat1 activationxa0isxa0important for Treg-mediated control of Th1 responses and associated autoimmunity.


Immunity | 2011

Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation.

Ashutosh Chaudhry; Robert M. Samstein; Piper Treuting; Yuqiong Liang; Marina C. Pils; Jan Michael Heinrich; Robert Smail Jack; F. Thomas Wunderlich; Jens C. Brüning; Werner Müller; Alexander Y. Rudensky

Effector CD4+ T cell subsets, whose differentiation is facilitated by distinct cytokine cues, amplify the corresponding type of inflammatory response. Regulatory T (Treg) cells integrate environmental cues to suppress particular types of inflammation. In this regard, STAT3, a transcription factor essential for T helper 17 (Th17) cell differentiation, is necessary for Treg cell-mediated control of Th17 cell responses. Here, we showed that anti-inflammatory interleukin-10 (IL-10), and not proinflammatory IL-6 and IL-23 cytokine signaling, endowed Treg cells with the ability to suppress pathogenic Th17 cell responses. Ablation of the IL-10 receptor in Treg cells resulted in selective dysregulation of Th17 cell responses and colitis similar to that observed in mice harboring STAT3-deficient Treg cells. Thus, Treg cells limit Th17 cell inflammation by serving as principal amplifiers of negative regulatory circuits operating in immune effector cells.


Immunity | 2011

Th17 Cells Express Interleukin-10 Receptor and Are Controlled by Foxp3− and Foxp3+ Regulatory CD4+ T Cells in an Interleukin-10-Dependent Manner

Samuel Huber; Nicola Gagliani; Enric Esplugues; William O'Connor; Francis J. Huber; Ashutosh Chaudhry; Masahito Kamanaka; Yasushi Kobayashi; Carmen J. Booth; Alexander Y. Rudensky; Maria Grazia Roncarolo; Manuela Battaglia; Richard A. Flavell

T helper 17 (Th17) cells are important for host defense against extracellular microorganisms. However, they are also implicated in autoimmune and chronic inflammatory diseases, and as such need to be tightly regulated. The mechanisms that directly control committed pathogenic Th17 cells in vivo remain unclear. We showed here that IL-17A-producing CD4+ T cells expressed interleukin-10 receptor α (IL-10Rα) in vivo. Importantly, T cell-specific blockade of IL-10 signaling led to a selective increase of IL-17A+IFN-γ⁻ (Th17) and IL-17A+IFN-γ+ (Th17+Th1) CD4+ T cells during intestinal inflammation in the small intestine. CD4+Foxp3⁻ IL-10-producing (Tr1) cells and CD4+Foxp3+ regulatory (Treg) cells were able to control Th17 and Th17+Th1 cells in an IL-10-dependent manner in vivo. Lastly, IL-10 treatment of mice with established colitis decreased Th17 and Th17+Th1 cell frequencies via direct signaling in T cells. Thus, IL-10 signaling directly suppresses Th17 and Th17+Th1 cells.


Nature Immunology | 2012

Transcription factor Foxp3 and its protein partners form a complex regulatory network

Dipayan Rudra; Paul deRoos; Ashutosh Chaudhry; Rachel E. Niec; Aaron Arvey; Robert M. Samstein; Christina S. Leslie; Scott A. Shaffer; David R. Goodlett; Alexander Y. Rudensky

The transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (Treg cells). To gain insights into the molecular mechanisms of Foxp3-mediated gene expression, we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multiprotein complexes of 400–800 kDa or larger and identified 361 associated proteins, ∼30% of which were transcription related. Foxp3 directly regulated expression of a large proportion of the genes encoding its cofactors. Some transcription factor partners of Foxp3 facilitated its expression. Functional analysis of the cooperation of Foxp3 with one such partner, GATA-3, provided additional evidence for a network of transcriptional regulation afforded by Foxp3 and its associates to control distinct aspects of Treg cell biology.


Journal of Immunology | 2009

Cutting Edge: Depletion of Foxp3+ Cells Leads to Induction of Autoimmunity by Specific Ablation of Regulatory T Cells in Genetically Targeted Mice

Jeong Kim; Katharina Lahl; Shohei Hori; Christoph Loddenkemper; Ashutosh Chaudhry; Paul deRoos; Alexander Y. Rudensky; Tim Sparwasser

We have recently described two independent mouse models in which the administration of diphtheria toxin (DT) leads to specific depletion of regulatory T cells (Tregs) due to expression of DT receptor-enhanced GFP under the control of the Foxp3 promoter. Both mouse models develop severe autoimmune disorders when Foxp3+ Tregs are depleted. Those findings were challenged in a recent study published in this journal suggesting the expression of Foxp3 in epithelial cells as the cause for disease development. By using genetic, cellular, and immunohistochemical approaches, we do not find evidence for Foxp3-expression in nonhematopoietic cells. DT injection does not lead to a loss of epithelial integrity in our Foxp3-DTR models. Instead, Foxp3 expression is Treg-specific and ablation of Foxp3+ Tregs leads to the induction of fatal autoimmune disorders. Autoimmunity can be reversed by the adoptive transfer of Tregs into depleted hosts, and the transfer of Foxp3-deficient bone marrow into T cell-deficient irradiated recipients leads to full-blown disease development.


Journal of Clinical Investigation | 2013

Control of inflammation by integration of environmental cues by regulatory T cells

Ashutosh Chaudhry; Alexander Y. Rudensky

Tregs have been implicated in control of homeostasis in the immune system and beyond. These cells restrain inflammatory responses to self antigens, commensal microorganisms, allergens, and pathogens and adapt their homeostatic and functional capabilities to a particular environment. In this review, we discuss a general model of integration of environmental cues by Tregs in which specialized Treg homeostatic, migratory, and suppression programs are established in dynamically changing inflammatory environments by maintaining an optimal threshold of activation of transcription factors involved in regulation of the corresponding type of effector immune responses.

Collaboration


Dive into the Ashutosh Chaudhry's collaboration.

Top Co-Authors

Avatar

Alexander Y. Rudensky

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satyajit Mayor

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Shahid Jameel

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Samstein

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Suman R. Das

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Li-Fan Lu

University of California

View shared research outputs
Top Co-Authors

Avatar

Paul deRoos

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Rachel E. Niec

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge