Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piper M. Treuting is active.

Publication


Featured researches published by Piper M. Treuting.


Immunity | 2008

Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces.

Yuri P. Rubtsov; Jeffrey P. Rasmussen; Emil Y. Chi; Jason D. Fontenot; Luca Castelli; Xin Ye; Piper M. Treuting; Lisa Siewe; Axel Roers; William R. Henderson; Werner Müller; Alexander Y. Rudensky

The regulatory T (Treg) cells restrain immune responses through suppressor-function elaboration that is dependent upon expression of the transcription factor Foxp3. Despite a critical role for Treg cells in maintaining lympho-myeloid homeostasis, it remains unclear whether a single mechanism or multiple mechanisms of Treg cell-mediated suppression are operating in vivo and how redundant such mechanisms might be. Here we addressed these questions by examining the role of the immunomodulatory cytokine IL-10 in Treg cell-mediated suppression. Analyses of mice in which the Treg cell-specific ablation of a conditional IL-10 allele was induced by Cre recombinase knocked into the Foxp3 gene locus showed that although IL-10 production by Treg cells was not required for the control of systemic autoimmunity, it was essential for keeping immune responses in check at environmental interfaces such as the colon and lungs. Our study suggests that Treg cells utilize multiple means to limit immune responses. Furthermore, these mechanisms are likely to be nonredundant, in that a distinct suppressor mechanism most likely plays a prominent and identifiable role at a particular tissue and inflammatory setting.


Science | 2009

CD4+ Regulatory T Cells Control TH17 Responses in a Stat3-Dependent Manner

Ashutosh Chaudhry; Dipayan Rudra; Piper M. Treuting; Robert M. Samstein; Yuqiong Liang; Arnold Kas; Alexander Y. Rudensky

Outfoxing Immune Excess Immune responses are kept in check by Foxp3-expressing CD4+-regulatory T cells (Tregs) through a variety of mechanisms. Expression of specific transcription factors directs Treg responses into distinct T helper cell lineages; however, the transcription factors that regulate particular helper lineages have not been completely characterized. Chaudhry et al. (p. 986, published online 1 October) show that the transcription factor Stat3, that is required for the initial differentiation of TH17-effector T cells, is also required for Treg cell-mediated suppression of TH17-mediated immune responses. Mice carrying a Treg cellspecific deletion in Stat3 succumb to an intestinal inflammatory disease driven by uncontrolled TH17 responses. Thus, different classes of immune responses can result from the expression of helper lineage–specific transcription factors. Suppressor T cells regulate different classes of immune responses through induction of specific transcription factors. Distinct classes of protective immunity are guided by activation of STAT transcription factor family members in response to environmental cues. CD4+ regulatory T cells (Tregs) suppress excessive immune responses, and their deficiency results in a lethal, multi-organ autoimmune syndrome characterized by T helper 1 (TH1) and T helper 2 (TH2) CD4+ T cell–dominated lesions. Here we show that pathogenic TH17 responses in mice are also restrained by Tregs. This suppression was lost upon Treg-specific ablation of Stat3, a transcription factor critical for TH17 differentiation, and resulted in the development of a fatal intestinal inflammation. These findings suggest that Tregs adapt to their environment by engaging distinct effector response–specific suppression modalities upon activation of STAT proteins that direct the corresponding class of the immune response.


Nature | 2009

Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses

Ye Zheng; Ashutosh Chaudhry; Arnold Kas; Paul deRoos; Jeong M. Kim; Tin-Tin Chu; Lynn M. Corcoran; Piper M. Treuting; Ulf Klein; Alexander Y. Rudensky

In the course of infection or autoimmunity, particular transcription factors orchestrate the differentiation of TH1, TH2 or TH17 effector cells, the responses of which are limited by a distinct lineage of suppressive regulatory T cells (Treg). Treg cell differentiation and function are guided by the transcription factor Foxp3, and their deficiency due to mutations in Foxp3 results in aggressive fatal autoimmune disease associated with sharply augmented TH1 and TH2 cytokine production. Recent studies suggested that Foxp3 regulates the bulk of the Foxp3-dependent transcriptional program indirectly through a set of transcriptional regulators serving as direct Foxp3 targets. Here we show that in mouse Treg cells, high amounts of interferon regulatory factor-4 (IRF4), a transcription factor essential for TH2 effector cell differentiation, is dependent on Foxp3 expression. We proposed that IRF4 expression endows Treg cells with the ability to suppress TH2 responses. Indeed, ablation of a conditional Irf4 allele in Treg cells resulted in selective dysregulation of TH2 responses, IL4-dependent immunoglobulin isotype production, and tissue lesions with pronounced plasma cell infiltration, in contrast to the mononuclear-cell-dominated pathology typical of mice lacking Treg cells. Our results indicate that Treg cells use components of the transcriptional machinery, promoting a particular type of effector CD4+ T cell differentiation, to efficiently restrain the corresponding type of the immune response.


Nature Immunology | 2010

Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria

Edward A. Miao; Irina A. Leaf; Piper M. Treuting; Dat P. Mao; Monica Dors; Anasuya Sarkar; Sarah E. Warren; Mark D. Wewers; Alan Aderem

Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of interleukin 1β (IL-1β) and IL-18. Although infection with wild-type Salmonella typhimurium is lethal to mice, we show here that a strain that persistently expresses flagellin was cleared by the cytosolic flagellin-detection pathway through the activation of caspase-1 by the NLRC4 inflammasome; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1-induced pyroptotic cell death released bacteria from macrophages and exposed the bacteria to uptake and killing by reactive oxygen species in neutrophils. Similarly, activation of caspase-1 cleared unmanipulated Legionella pneumophila and Burkholderia thailandensis by cytokine-independent mechanisms. This demonstrates that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.


Nature | 2012

Extrathymically generated regulatory T cells control mucosal TH2 inflammation

Steven Z. Josefowicz; Rachel E. Niec; Hye Young Kim; Piper M. Treuting; Takatoshi Chinen; Ye Zheng; Dale T. Umetsu; Alexander Y. Rudensky

A balance between pro- and anti-inflammatory mechanisms at mucosal interfaces, which are sites of constitutive exposure to microbes and non-microbial foreign substances, allows for efficient protection against pathogens yet prevents adverse inflammatory responses associated with allergy, asthma and intestinal inflammation. Regulatory T (Treg) cells prevent systemic and tissue-specific autoimmunity and inflammatory lesions at mucosal interfaces. These cells are generated in the thymus (tTreg cells) and in the periphery (induced (i)Treg cells), and their dual origin implies a division of labour between tTreg and iTreg cells in immune homeostasis. Here we show that a highly selective blockage in differentiation of iTreg cells in mice did not lead to unprovoked multi-organ autoimmunity, exacerbation of induced tissue-specific autoimmune pathology, or increased pro-inflammatory responses of T helper 1 (TH1) and TH17 cells. However, mice deficient in iTreg cells spontaneously developed pronounced TH2-type pathologies at mucosal sites—in the gastrointestinal tract and lungs—with hallmarks of allergic inflammation and asthma. Furthermore, iTreg-cell deficiency altered gut microbial communities. These results suggest that whereas Treg cells generated in the thymus appear sufficient for control of systemic and tissue-specific autoimmunity, extrathymic differentiation of Treg cells affects commensal microbiota composition and serves a distinct, essential function in restraint of allergic-type inflammation at mucosal interfaces.


Cell | 2012

Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict

Robert M. Samstein; Steven Z. Josefowicz; Aaron Arvey; Piper M. Treuting; Alexander Y. Rudensky

Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.


Journal of Experimental Medicine | 2007

Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease

Blythe D. Sather; Piper M. Treuting; Nikole Perdue; Mike Miazgowicz; Jason D. Fontenot; Alexander Y. Rudensky; Daniel J. Campbell

CD4+Foxp3+ regulatory T cells (T reg) are essential for maintaining self-tolerance, but their functional mechanisms and sites of action in vivo are poorly defined. We examined the homing receptor expression and tissue distribution of T reg cells in the steady state and determined whether altering their distribution by removal of a single chemokine receptor impairs their ability to maintain tissue-specific peripheral tolerance. We found that T reg cells are distributed throughout all nonlymphoid tissues tested, and are particularly prevalent in the skin, where they express a unique CCR4+CD103hi phenotype. T reg cell expression of CCR4 and CD103 is induced by antigen-driven activation within subcutaneous lymph nodes, and accumulation of T reg cells in the skin and lung airways is impaired in the absence of CCR4 expression. Mice with a complete loss of CCR4 in the T reg cell compartment develop lymphocytic infiltration and severe inflammatory disease in the skin and lungs, accompanied by peripheral lymphadenopathy and increased differentiation of skin-tropic CD4+Foxp3+ T cells. Thus, selectively altering T reg cell distribution in vivo leads to the development of tissue-specific inflammatory disease.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Derivation of naïve human embryonic stem cells

Carol B. Ware; Angelique M. Nelson; Brigham Mecham; Jennifer Hesson; Wenyu Zhou; Erica C. Jonlin; Antonio J. Jimenez-Caliani; Xinxian Deng; Christopher Cavanaugh; Savannah Cook; Paul J. Tesar; Jeffrey Okada; Lilyana Margaretha; Henrik Sperber; Michael Choi; C. Anthony Blau; Piper M. Treuting; R. David Hawkins; Vincenzo Cirulli; Hannele Ruohola-Baker

Significance We report on generation of nontransgenic, naïve human pluripotent cells that represent the developmentally earliest state described for human established cells. Existing human ES cell lines in the later primed state can be toggled in reverse to naïve by exposure to histone deacetylase inhibitors prior to naïve culture. A new line was established directly from an eight-cell embryo under naïve culture conditions. We describe the naïve state in humans and show that naïve human ES cells have expanded endoderm developmental capacity. The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222–9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.


Cell | 2015

A Distinct Function of Regulatory T Cells in Tissue Protection

Nicholas Arpaia; Jesse A. Green; Bruno Moltedo; Aaron Arvey; Saskia Hemmers; Shaopeng Yuan; Piper M. Treuting; Alexander Y. Rudensky

Regulatory T (Treg) cells suppress immune responses to a broad range of non-microbial and microbial antigens and indirectly limit immune inflammation-inflicted tissue damage by employing multiple mechanisms of suppression. Here, we demonstrate that selective Treg cell deficiency in amphiregulin leads to severe acute lung damage and decreased blood oxygen concentration during influenza virus infection without any measureable alterations in Treg cell suppressor function, antiviral immune responses, or viral load. This tissue repair modality is mobilized in Treg cells in response to inflammatory mediator IL-18 or alarmin IL-33, but not by TCR signaling that is required for suppressor function. These results suggest that, during infectious lung injury, Treg cells have a major direct and non-redundant role in tissue repair and maintenance-distinct from their role in suppression of immune responses and inflammation-and that these two essential Treg cell functions are invoked by separable cues.


Cancer Research | 2006

Helicobacter Infection Is Required for Inflammation and Colon Cancer in Smad3-Deficient Mice

Lillian Maggio-Price; Piper M. Treuting; Weiping Zeng; Mark Tsang; Helle Bielefeldt-Ohmann; Brian M. Iritani

Accumulating evidence suggests that intestinal microbial organisms may play an important role in triggering and sustaining inflammation in individuals afflicted with inflammatory bowel disease (IBD). Moreover, individuals with IBD are at increased risk for developing colorectal cancer, suggesting that chronic inflammation may initiate genetic or epigenetic changes associated with cancer development. We tested the hypothesis that bacteria may contribute to the development of colon cancer by synergizing with defective transforming growth factor-beta (TGF-beta) signaling, a pathway commonly mutated in human colon cancer. Although others have reported that mice deficient in the TGF-beta signaling molecule SMAD3 develop colon cancer, we found that SMAD3-deficient mice maintained free of the Gram-negative enterohepatic bacteria Helicobacter spp. for up to 9 months do not develop colon cancer. Furthermore, infection of SMAD3(-/-) mice with Helicobacter triggers colon cancer in 50% to 66% of the animals. Using real-time PCR, we found that Helicobacter organisms concentrate in the cecum, the preferred site of tumor development. Mucinous adenocarcinomas develop 5 to 30 weeks after infection and are preceded by an early inflammatory phase, consisting of increased proliferation of epithelial cells; increased numbers of cyclooxygenase-2-positive cells, CD4(+) T cells, macrophages; and increased MHC class II expression. Colonic tissue revealed increased transcripts for the oncogene c-myc and the proinflammatory cytokines interleukin-1alpha (IL-1alpha), IL-1beta, IL-6, IFN-gamma, and tumor necrosis factor-alpha, some of which have been implicated in colon cancer. These results suggest that bacteria may be important in triggering colorectal cancer, notably in the context of gene mutations in the TGF-beta signaling pathway, one of the most commonly affected cellular pathways in colorectal cancer in humans.

Collaboration


Dive into the Piper M. Treuting's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thea Brabb

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Alexander Y. Rudensky

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Audrey Seamons

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jisun Paik

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerrold M. Ward

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashutosh Chaudhry

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge