Ashwini L. Chand
Prince Henry's Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ashwini L. Chand.
Human Reproduction Update | 2010
Ashwini L. Chand; Craig A. Harrison; Andrew N. Shelling
BACKGROUND Elucidation of the causes of premature ovarian failure (POF) is difficult due to the heterogeneity of the condition. Inhibin is a potential candidate gene for POF based on its dual actions on FSH secretion by the pituitary and gametogenesis in the gonads. A missense mutation in the inhibin alpha subunit gene (INHA G769A) is associated with POF in several populations. However, there is phenotypic heterogeneity in INHA G769A mutation carriers. METHODS Relevant studies were identified by searching PubMed and mutational frequencies combined for meta-analysis. RESULTS Meta-analysis of published studies revealed a risk difference of 0.04 (-0.030 to 0.11). The occurrence of asymptomatic carriers in populations suggests incomplete penetrance and/or a multi-genetic cause of POF. We propose that a decline in inhibin bioactivity caused by the mutation could increase FSH levels; and in a susceptible individual, the heightened sensitivity to gonadotrophins causes POF. Impaired paracrine effects of inhibin could impact folliculogenesis due to reduced antagonism of activin, bone morphogenetic protein 15 and growth differentiation factor 9. Functional studies of this mutation indicate normal production of dimeric inhibin A and B and impaired bioactivity of inhibin B. CONCLUSIONS The identification of an autosomal mutation in the inhibin alpha subunit gene that is significantly linked to POF in certain ethnic populations highlights the role of inhibin in the regulation of ovarian biology and fertility. Although the reduction of inhibin B bioactivity by the INHA G769A mutation is clearly not the only cause, evidence suggests that this change may serve as a susceptibility factor, increasing the likelihood of POF.
Reproductive Biology and Endocrinology | 2007
Ashwini L. Chand; Andrew S Murray; Rebecca L. Jones; Natalie J. Hannan; Lois A. Salamonsen; Luk Rombauts
BackgroundUnderstanding the pathophysiology of chemokine secretion in endometriosis may offer a novel area of therapeutic intervention. This study aimed to identify chemokines differentially expressed in epithelial glands in eutopic endometrium from normal women and those with endometriosis, and to establish the expression profiles of key chemokines in endometriotic lesions.MethodsLaser capture microdissection isolated epithelial glands from endometrial eutopic tissue from women with and without endometriosis in the mid-secretory phase of their menstrual cycles. Gene profiling of the excised glands used a human chemokine and receptor cDNA array. Selected chemokines were further examined using real-time PCR and immunohistochemistry.Results22 chemokine/receptor genes were upregulated and two downregulated in pooled endometrial epithelium of women with endometriosis compared with controls. CCL16 and CCL21 mRNA was confirmed as elevated in some women with endometriosis compared to controls on individual samples. Immunoreactive CCL16 and CCL21 were predominantly confined to glands in eutopic and ectopic endometrium: leukocytes also stained. Immunoreactive CCL16 was overall higher in glands in ectopic vs. eutopic endometrium from the same woman (P < 0.05). Staining for CCL16 and CCL21 was highly correlated in individual tissues.ConclusionThis study provides novel candidate molecules and suggests a potential local role for CCL16 and CCL21 as mediators contributing to the inflammatory events associated with endometriosis.
The Journal of Steroid Biochemistry and Molecular Biology | 2012
Kyren A. Lazarus; Dhilushi Wijayakumara; Ashwini L. Chand; Evan R. Simpson; Colin Clyne
Liver Receptor Homolog-1 (LRH-1; NR5A2) belongs to the orphan nuclear receptor superfamily, and plays vital roles in early development, cholesterol homeostasis, steroidogenesis and certain diseases, including cancer. It is expressed in embryonic stem cells, adult liver, intestine, pancreas and ovary. It binds to DNA as a monomer and is regulated by various ligand-dependent and -independent mechanisms. Recent work identified synthetic ligands for LRH-1; such compounds may yield useful therapeutics for a range of pathologic conditions associated with aberrant expression and activity of LRH-1.
BMC Cancer | 2009
Ashwini L. Chand; Evan R. Simpson; Colin Clyne
BackgroundUntil recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of BRCA1 gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression in vitro. Our objective was to characterise aromatase gene (CYP19A1) and its promoter expression in breast adipose and ovarian tissue in BRCA1 mutation carriers and unaffected controls.MethodsWe measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women.ResultsWe demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of BRCA1 mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts.ConclusionUnderstanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in BRCA1 mutation carriers.
PLOS ONE | 2012
Ashwini L. Chand; Dhilushi Wijayakumara; Kevin C. Knower; Kerrie A. Herridge; Tamara L. Howard; Kyren A. Lazarus; Colin Clyne
Background Liver Receptor Homolog 1 (LRH-1, NR5A2) is an orphan nuclear receptor that is over-expressed in cancers in tissues such as the breast, colon and pancreas. LRH-1 plays important roles in embryonic development, steroidogenesis and cholesterol homeostasis. In tumor cells, LRH-1 induces proliferation and cell cycle progression. High LRH-1 expression is demonstrated in breast cancers, positively correlating with ERα status and aromatase activity. LRH-1 dependent cellular mechanisms in breast cancer epithelial cells are poorly defined. Hence in the present study we investigated the actions of LRH-1 in estrogen receptor α (ERα) positive breast cancer cells. Results The study aimed to investigate LRH-1 dependent mechanisms that promote breast cancer proliferation. We identified that LRH-1 regulated the expression of Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) in MCF-7 and MDA-MB-231 cells. Over-expression of LRH-1 increased GREB1 mRNA levels while knockdown of LRH-1 reduced its expression. GREB1 is a well characterised ERα target gene, with three estrogen response elements (ERE) located on its promoter. Chromatin immunoprecipitation studies provided evidence of the co-localisation of LRH-1 and ERα at all three EREs. With electrophoretic mobility shift assays, we demonstrated direct binding of LRH-1 to EREs located on GREB1 and Trefoil Factor 1 (TFF1, pS2) promoters. LRH-1 and ERα co-operatively activated transcription of ERE luciferase reporter constructs suggesting an overlap in regulation of target genes in breast cancer cells. Over-expression of LRH-1 resulted in an increase in cell proliferation. This effect was more pronounced with estradiol treatment. In the presence of ICI 182,780, an ERα antagonist, LRH-1 still induced proliferation. Conclusions We conclude that in ER-positive breast cancer cells, LRH-1 promotes cell proliferation by enhancing ERα mediated transcription of target genes such as GREB-1. Collectively these findings indicate the importance of LRH-1 in the progression of hormone-dependent breast cancer and implicate LRH-1 as a potential avenue for drug development.
Breast Cancer Research and Treatment | 2008
Kerry J. McInnes; Kristy A. Brown; Kevin C. Knower; Ashwini L. Chand; Colin Clyne; Evan R. Simpson
Aromatase is a member of the cytochrome P450 superfamily of enzymes which catalyses the rate-limiting step in the biosynthesis of estrogens. A number of clinical studies have highlighted the importance of local estrogen production in adipose tissue. In particular, in the postmenopausal woman, the degree of her estrogenization is mainly determined by the extent of her adiposity and it is this extragonadal source of estrogen that likely contributes to breast cancer development and progression. The mechanisms regulating aromatase expression in adipose tissue however, have not been fully elucidated. In this study, we have characterised the expression of aromatase and its activity in a human preadipocyte cell strain, SGBS. Aromatase is expressed in SGBS cells and its expression and activity are strongly stimulated by forskolin (FSK) and phorbol 12-myristate-13-acetate (PMA) treatment. Consistent with this, FSK and PMA treatment also increased activation of the proximal aromatase promoter, promoter II. These findings mimic those that have previously been shown in isolated primary human preadipocytes. These data suggest that SGBS cells are a valuable model with which to further elucidate the mechanisms regulating aromatase expression, and therefore local estrogen synthesis in human adipose tissue.
Steroids | 2011
Ashwini L. Chand; Kerrie A. Herridge; Tamara L. Howard; Evan R. Simpson; Colin Clyne
In postmenopausal breast cancers, the increase in aromatase expression observed in tumour associated adipose stromal cells is mediated via the upregulation of promoter II (PII) transcription. Factors such as PGE₂ which are secreted from breast carcinomas induce PII expression. The orphan nuclear receptor LRH-1/NR5A2 is one of the critical downstream transcriptional mediators of this effect. The aim of the current study was to determine whether LRH-1 could bind directly to PII and whether the suppression of LRH-1 expression could inhibit aromatase expression in human adipose stromal fibroblasts. Chromatin immunoprecipitation demonstrated endogenous LRH-1 occupancy on PII under basal conditions and with treatment with forskolin and phorbol 12-myristate 13-acetate (PMA). To assess the impact of LRH-1 knockdown on FSK/PMA mediated PII expression, cells were transfected with shRNA targeted against LRH-1 (shLRH-1) and treated with forskolin and PMA. A decrease in LRH-1, PII and total aromatase mRNA transcripts was observed in shLRH-1 transfected cells compared to controls under basal and treatment conditions. The results of this study support the hypothesis that suppression of LRH-1 may potentially be beneficial in the tissue specific regulation of aromatase expression in post menopausal breast cancer.
Steroids | 2013
Ashwini L. Chand; Niroshani Pathirage; Kyren A. Lazarus; Simon Chu; Ann E. Drummond; Peter J. Fuller; Colin Clyne
Granulosa cell tumours of the ovary (GCT) express aromatase and produce oestrogens. The ovarian-specific aromatase promoter (pII) is regulated by members of the group 5A nuclear receptor family, SF-1 and LRH-1. Since both SF-1 and LRH-1 are implicated in proliferation and cancer, we hypothesised that alteration in the expression of either or both receptors may be associated with GCT. We therefore determined the expression of LRH-1, SF-1 and aromatase in a cohort of GCT, mucinous and serous cystadenocarcinomas, and normal ovaries. LRH-1 mRNA was present at low level in normal ovary and serous cystadenocarcinoma, but was elevated approximately 30-fold in GCT, and 8-fold in mucinous cystadenocarcinoma, compared to normal ovary. LRH-1 protein expression was confirmed in GCT by immunohistochemistry. SF-1 mRNA was significantly lower that of LRH-1 in all samples and not significantly altered in GCT, compared to normal ovary. Aromatase mRNA was present at low level in normal ovary and serous and mucinous cystadenocarcinoma, and significantly elevated (18-fold) in GCT compared to normal ovary. Despite the coordinate over-expression of both LRH-1 and aromatase in GCT versus normal ovary, their levels did not correlate in individual patients; rather, aromatase expression correlated with that of SF-1. Finally, although both LRH-1 and SF-1 activated aromatase promoter activity in transient transfection studies, gel-shift and chromatin immunoprecipitation data indicated that SF-1, but not LRH-1, bound to the aromatase promoter. We conclude that SF-1 regulates aromatase expression in GCT; over-expression of LRH-1 suggests that this receptor may be involved in the pathogenesis of GCT by mechanisms other than the regulation of aromatase. Its role in this disease therefore warrants further investigation.
Endocrinology | 2014
Kyren A. Lazarus; Kristy A. Brown; Morag J. Young; Zhe Zhao; Rhiannon S. Coulson; Ashwini L. Chand; Colin Clyne
Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that belongs to the NR5A subgroup of nuclear receptors. LRH-1 induces key genes to regulate metabolic process, ovarian function, cancer cell proliferation, and steroidogenesis. In the breast, LRH-1 modulates and synergizes with endogenous estrogen signaling to promote breast cancer cell proliferation. We used small interfering RNA knockdown strategies to deplete LRH-1 in breast cancer cells and followed with microarray analysis to identify LRH-1-dependent mechanisms. We identified key genes involved in TGF-β signaling to be highly responsive to LRH-1 knockdown. This relationship was validated in 2 breast cancer cell lines overexpressing LRH-1 in vitro and in a novel transgenic mouse with targeted LRH-1 overexpression in mammary epithelial cells. Notably, TGF-β signaling was activated in LRH-1-overexpressing breast cancer cells and mouse mammary glands. Further analyses of mammary gross morphology revealed a significant reduction in mammary lateral budding after LRH-1 overexpression. These findings suggest that the altered mammary morphogenesis in LRH-1 transgenic animals is mediated via enhanced TGF-β expression. The regulation of TGF-β isoforms and SMAD2/3-mediated downstream signaling by LRH-1 also implicates a potential contribution of LRH-1 in breast cancer. Collectively, these data demonstrate that LRH-1 regulates TGF-β expression and downstream signaling in mouse mammary glands.
Biochemical and Biophysical Research Communications | 2013
Kyren A. Lazarus; Zhe Zhao; Kevin C. Knower; Sarah Quynh Giao To; Ashwini L. Chand; Colin Clyne
The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E2), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER- cells. However, the presence of LRH-1 protein in ER- cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER- breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER- compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E2, showed increased mRNA stability in ER- versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E2 treatment, this effect mediated by ERα. Our data demonstrates that in ER- cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER- cells as well as ER- tumors suggests a possible role in the development of ER- tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER- and ER+ breast cancer.