Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asif J. Iqbal is active.

Publication


Featured researches published by Asif J. Iqbal.


Pharmacological Reviews | 2013

CC Chemokine Receptors and Chronic Inflammation—Therapeutic Opportunities and Pharmacological Challenges

Gemma E. White; Asif J. Iqbal; David R. Greaves

Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation—rheumatoid arthritis, atherosclerosis, and metabolic syndrome—we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.


Free Radical Biology and Medicine | 2015

Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation

Eileen McNeill; Mark J. Crabtree; Natasha Sahgal; Jyoti Patel; Surawee Chuaiphichai; Asif J. Iqbal; Ashley B. Hale; David R. Greaves; Keith M. Channon

Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl/flTie2cre macrophages. These findings identify BH4-dependent iNOS regulation and NO generation as specific requirements for NRF2-dependent responses in macrophage inflammatory activation.


Blood | 2014

Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

Asif J. Iqbal; Eileen McNeill; Theodore S. Kapellos; Daniel Regan-Komito; Sophie Norman; Sarah Burd; Nicola Smart; Daniel E. W. Machemer; Elena Stylianou; Helen McShane; Keith M. Channon; Ajay Chawla; David R. Greaves

The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation.


Mediators of Inflammation | 2016

Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation

Theodore S. Kapellos; Asif J. Iqbal

Macrophages function as sentinel cells, which constantly monitor the host environment for infection or injury. Macrophages have been shown to exhibit a spectrum of activated phenotypes, which can often be categorised under the M1/M2 paradigm. M1 macrophages secrete proinflammatory cytokines and chemokines, such as TNF-α, IL-6, IL-12, CCL4, and CXCL10, and induce phagocytosis and oxidative dependent killing mechanisms. In contrast, M2 macrophages support wound healing and resolution of inflammation. In the past decade, interest has grown in understanding the mechanisms involved in regulating macrophage activation. In particular, epigenetic control of M1 or M2 activation states has been shown to rely on posttranslational modifications of histone proteins adjacent to inflammatory-related genes. Changes in methylation and acetylation of histones by methyltransferases, demethylases, acetyltransferases, and deacetylases can all impact how macrophage phenotypes are generated. In this review, we summarise the latest advances in the field of epigenetic regulation of macrophage polarisation to M1 or M2 states, with particular focus on the cytokine and chemokine profiles associated with these phenotypes.


PLOS ONE | 2013

A Real Time Chemotaxis Assay Unveils Unique Migratory Profiles amongst Different Primary Murine Macrophages

Asif J. Iqbal; Daniel Regan-Komito; Ivy Christou; Gemma E. White; Eileen McNeill; Amy Kenyon; Lewis Taylor; Theodore S. Kapellos; Edward A. Fisher; Keith M. Channon; David R. Greaves

Chemotaxis assays are an invaluable tool for studying the biological activity of inflammatory mediators such as CC chemokines, which have been implicated in a wide range of chronic inflammatory diseases. Conventional chemotaxis systems such as the modified Boyden chamber are limited in terms of the data captured given that the assays are analysed at a single time-point. We report the optimisation and validation of a label-free, real-time cell migration assay based on electrical cell impedance to measure chemotaxis of different primary murine macrophage populations in response to a range of CC chemokines and other chemoattractant signalling molecules. We clearly demonstrate key differences in the migratory behavior of different murine macrophage populations and show that this dynamic system measures true macrophage chemotaxis rather than chemokinesis or fugetaxis. We highlight an absolute requirement for Gαi signaling and actin cytoskeletal rearrangement as demonstrated by Pertussis toxin and cytochalasin D inhibition. We also studied the chemotaxis of CD14+ human monocytes and demonstrate distinct chemotactic profiles amongst different monocyte donors to CCL2. This real-time chemotaxis assay will allow a detailed analysis of factors that regulate macrophage responses to chemoattractant cytokines and inflammatory mediators.


American Journal of Pathology | 2011

Regular articleImmunopathology and infectious diseaseEndogenous Galectin-1 and Acute Inflammation: Emerging Notion of a Galectin-9 Pro-Resolving Effect

Asif J. Iqbal; André L.F. Sampaio; Francesco Maione; Karin V. Greco; Toshiro Niki; Mitsuomi Hirashima; Mauro Perretti; Dianne Cooper

The role of endogenous galectin-1 (Gal-1) in acute inflammation has been poorly investigated. We therefore performed the carrageenan-induced paw edema model in wild-type and Gal-1(-/-) mice. On subplantar injection of carrageenan, Gal-1(-/-) mice displayed a similar first phase of edema (≤24 hours) to wild-type mice; however, a much less pronounced second phase (48 to 96 hours) was evident in this genotype. This reduced inflammation was associated with lower paw expression of inflammatory genes and cell infiltrates. Analysis of galectin protein and mRNA expression revealed high expression of Gal-1 in wild-type paws during resolution (≥48 hours), with some expression of galectin-9 (Gal-9). Administration of stable Gal-1 to wild-type mice completely ablated the first phase of edema but was ineffective when administered therapeutically at the 24-hour time point. Conversely, Gal-9 administration did not alter the first phase of edema but significantly reduced the second phase when administered therapeutically. This suggests anti-inflammatory actions for both proteins in this model albeit at different phases of the inflammatory response. Collectively, these data indicate that the absence of endogenous Gal-1 results in an abrogated response during the second phase of the edema reaction.


Nature Communications | 2015

RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling

Jyoti Patel; Eileen McNeill; Gillian Douglas; Ashley B. Hale; J de Bono; Regent Lee; Asif J. Iqbal; D. Regan-Komito; E. Stylianou; David R. Greaves; Keith M. Channon

Chemokine signalling drives monocyte recruitment in atherosclerosis and aortic aneurysms. The mechanisms that lead to retention and accumulation of macrophages in the vascular wall remain unclear. Regulator of G-Protein Signalling-1 (RGS1) deactivates G-protein signalling, reducing the response to sustained chemokine stimulation. Here we show that Rgs1 is upregulated in atherosclerotic plaque and aortic aneurysms. Rgs1 reduces macrophage chemotaxis and desensitizes chemokine receptor signalling. In early atherosclerotic lesions, Rgs1 regulates macrophage accumulation and is required for the formation and rupture of Angiotensin II-induced aortic aneurysms, through effects on leukocyte retention. Collectively, these data reveal a role for Rgs1 in leukocyte trafficking and vascular inflammation and identify Rgs1, and inhibition of chemokine receptor signalling as potential therapeutic targets in vascular disease.


Biochemical Pharmacology | 2016

A novel real time imaging platform to quantify macrophage phagocytosis

Theodore S. Kapellos; Lewis Taylor; Heyne Lee; Sally A. Cowley; William James; Asif J. Iqbal; David Robert Greaves

Graphical abstract


eLife | 2016

Acute exposure to apolipoprotein a1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo

Asif J. Iqbal; Tessa J. Barrett; Lewis Taylor; Eileen McNeill; Arun Manmadhan; Carlota Recio; Alfredo Carmineri; Maximillian H. Brodermann; Gemma E. White; Dianne Cooper; Joseph A. DiDonato; Maryam Zamanian-Daryoush; Stanley L. Hazen; Keith M. Channon; David Robert Greaves; Edward A. Fisher

Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20–60 min) apoA1 treatment induced a substantial (50–90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes. DOI: http://dx.doi.org/10.7554/eLife.15190.001


Glia | 2016

Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis.

Rachel E. James; James M. Hillis; István Adorján; Betty Gration; Mayara V. Mundim; Asif J. Iqbal; Moon Moon Majumdar; Richard L. Yates; Maureen H. Richards; Gwendolyn E. Goings; Gabriele C. DeLuca; David R. Greaves; Stephen D. Miller; Francis G. Szele

Multiple sclerosis (MS) frequently starts near the lateral ventricles, which are lined by subventricular zone (SVZ) progenitor cells that can migrate to lesions and contribute to repair. Because MS‐induced inflammation may decrease SVZ proliferation and thus limit repair, we studied the role of galectin‐3 (Gal‐3), a proinflammatory protein. Gal‐3 expression was increased in periventricular regions of human MS in post‐mortem brain samples and was also upregulated in periventricular regions in a murine MS model, Theilers murine encephalomyelitis virus (TMEV) infection. Whereas TMEV increased SVZ chemokine (CCL2, CCL5, CCL, and CXCL10) expression in wild type (WT) mice, this was inhibited in Gal‐3−/− mice. Though numerous CD45+ immune cells entered the SVZ of WT mice after TMEV infection, their numbers were significantly diminished in Gal‐3−/− mice. TMEV also reduced neuroblast and proliferative SVZ cell numbers in WT mice but this was restored in Gal‐3−/− mice and was correlated with increased numbers of doublecortin+ neuroblasts in the corpus callosum. In summary, our data showed that loss of Gal‐3 blocked chemokine increases after TMEV, reduced immune cell migration into the SVZ, reestablished SVZ proliferation and increased the number of progenitors in the corpus callosum. These results suggest Gal‐3 plays a central role in modulating the SVZ neurogenic niches response to this model of MS. GLIA 2016;64:105–121

Collaboration


Dive into the Asif J. Iqbal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eileen McNeill

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge