Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyoti Patel is active.

Publication


Featured researches published by Jyoti Patel.


European Heart Journal | 2013

Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

Gillian Douglas; Erik Van Kampen; Ashley B. Hale; Eileen McNeill; Jyoti Patel; Mark J. Crabtree; Ziad Ali; Robert A. Hoerr; N J Alp; Keith M. Channon

Aims Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Methods and results Endothelial cell repopulation was assessed en face in stented arteries in ApoE−/− mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm2, P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm2, P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE−/− mice had less neointima formation compared with ApoE−/− littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm2, P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm2, P = 0.043). Conclusion Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.


Mediators of Inflammation | 2013

The downstream regulation of chemokine receptor signalling: implications for atherosclerosis.

Jyoti Patel; Keith M. Channon; Eileen McNeill

Heterotrimeric G-protein-coupled receptors (GPCRs) are key mediators of intracellular signalling, control numerous physiological processes, and are one of the largest class of proteins to be pharmacologically targeted. Chemokine-induced macrophage recruitment into the vascular wall is an early pathological event in the progression of atherosclerosis. Leukocyte activation and chemotaxis during cell recruitment are mediated by chemokine ligation of multiple GPCRs. Regulation of GPCR signalling is critical in limiting vascular inflammation and involves interaction with downstream proteins such as GPCR kinases (GRKs), arrestin proteins and regulator of G-protein signalling (RGS) proteins. These have emerged as new mediators of atherogenesis by functioning in internalisation, desensitisation, and signal termination of chemokine receptors. Targeting chemokine signalling through these proteins may provide new strategies to alter atherosclerotic plaque formation and plaque biology.


Nature Communications | 2015

RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling

Jyoti Patel; Eileen McNeill; Gillian Douglas; Ashley B. Hale; J de Bono; Regent Lee; Asif J. Iqbal; D. Regan-Komito; E. Stylianou; David R. Greaves; Keith M. Channon

Chemokine signalling drives monocyte recruitment in atherosclerosis and aortic aneurysms. The mechanisms that lead to retention and accumulation of macrophages in the vascular wall remain unclear. Regulator of G-Protein Signalling-1 (RGS1) deactivates G-protein signalling, reducing the response to sustained chemokine stimulation. Here we show that Rgs1 is upregulated in atherosclerotic plaque and aortic aneurysms. Rgs1 reduces macrophage chemotaxis and desensitizes chemokine receptor signalling. In early atherosclerotic lesions, Rgs1 regulates macrophage accumulation and is required for the formation and rupture of Angiotensin II-induced aortic aneurysms, through effects on leukocyte retention. Collectively, these data reveal a role for Rgs1 in leukocyte trafficking and vascular inflammation and identify Rgs1, and inhibition of chemokine receptor signalling as potential therapeutic targets in vascular disease.


Mediators of Inflammation | 2017

Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models

Daniel P. Jones; Harry D. True; Jyoti Patel

Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2017

Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE-/- Reporter Mouse-Brief Report.

Eileen McNeill; Asif J. Iqbal; Daniel P. Jones; Jyoti Patel; P Coutinho; Lewis Taylor; David R. Greaves; Keith M. Channon

Objective— To create a model of atherosclerosis using green fluorescent protein (GFP)–targeted monocytes/macrophages, allowing analysis of both endogenous GFP+ and adoptively transferred GFP+ myeloid cells in arterial inflammation. Approach and Results— hCD68GFP reporter mice were crossed with ApoE−/− mice. Expression of GFP was localized to macrophages in atherosclerotic plaques and in angiotensin II–induced aortic aneurysms and correlated with galectin 3 and mCD68 expression. Flow cytometry confirmed GFP+ expression in CD11b+/CD64+, CD11c+/MHC-IIHI, and CD11b+/F4/80+ myeloid cells. Adoptive transfer of GFP+ monocytes demonstrated monocyte recruitment to both adventitia and atherosclerotic plaque, throughout the aortic root, within 72 hours. We demonstrated the biological utility of hCD68GFP monocytes by comparing the recruitment of wild-type and CCR2−/− monocytes to sites of inflammation. Conclusions— hCD68GFP/ApoE−/− mice provide a new approach to study macrophage accumulation in atherosclerotic plaque progression and to identify cells recruited from adoptively transferred monocytes.


Scientific Reports | 2015

Hydrodynamic Gene Delivery of CC Chemokine Binding Fc Fusion Proteins to Target Acute Vascular Inflammation In Vivo

Eileen McNeill; Asif J. Iqbal; Gemma E. White; Jyoti Patel; David R. Greaves; Keith M. Channon

Blockade of CC chemokines is an attractive yet under utilized therapeutic strategy. We report the in vivo pharmacokinetics of a broad-spectrum vaccinia virus CC chemokine binding protein (35 K) fused to human IgG1 Fc. We demonstrate that the in vivo efficacy of the protein can be interrogated using hydrodynamic gene delivery of a standard mammalian expression plasmid. High plasma levels of the 35 K-Fc protein are maintained for at least 14 days post gene transfer, with the protein still detectable at 5 weeks. We confirm that the protein has biological activity in acute inflammation, causing a significant reduction in monocyte recruitment during zymosan induced peritonitis. The ability of 35 K-Fc to block more complex pathologies is demonstrated using aortic digests to assess angiotensin II mediated leukocyte recruitment to the aorta. Angiotensin II causes upregulation of mCCL2 in the aorta causing the accumulation of CCR2+ cells. Peak monocyte recruitment to the aorta occurs within 3 days and this process is CC chemokine dependent, being significantly reduced by hydrodynamic delivery of 35 K-Fc.


Cardiovascular Research | 2018

Roles for Endothelial Cell and Macrophage Gch1 and Tetrahydrobiopterin in Atherosclerosis Progression.

Gillian Douglas; Ashley B. Hale; Jyoti Patel; Surawee Chuaiphichai; Ayman Al Haj Zen; Victoria S. Rashbrook; Lucy Trelfa; Mark J. Crabtree; Eileen McNeill; Keith M. Channon

Abstract Aims GTP cyclohydrolase I catalyses the first and rate-limiting reaction in the synthesis of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthases (NOS). Both eNOS and iNOS have been implicated in the progression of atherosclerosis, with opposing effects in eNOS and iNOS knockout mice. However, the pathophysiologic requirement for BH4 in regulating both eNOS and iNOS function, and the effects of loss of BH4 on the progression of atherosclerosis remains unknown. Methods and results Hyperlipidemic mice deficient in Gch1 in endothelial cells and leucocytes were generated by crossing Gch1fl/flTie2cre mice with ApoE–/– mice. Deficiency of Gch1 and BH4 in endothelial cells and myeloid cells was associated with mildly increased blood pressure. High fat feeding for 6 weeks in Gch1fl/flTie2CreApoE–/– mice resulted in significantly decreased circulating BH4 levels, increased atherosclerosis burden and increased plaque macrophage content. Gch1fl/flTie2CreApoE–/– mice showed hallmarks of endothelial cell dysfunction, with increased aortic VCAM-1 expression and decreased endothelial cell dependent vasodilation. Furthermore, loss of BH4 from pro-inflammatory macrophages resulted in increased foam cell formation and altered cellular redox signalling, with decreased expression of antioxidant genes and increased reactive oxygen species. Bone marrow chimeras revealed that loss of Gch1 in both endothelial cells and leucocytes is required to accelerate atherosclerosis. Conclusion Both endothelial cell and macrophage BH4 play important roles in the regulation of NOS function and cellular redox signalling in atherosclerosis.


Journal of Molecular Medicine | 2014

Contrasting in vitro vs. in vivo effects of a cell membrane-specific CC-chemokine binding protein on macrophage chemotaxis.

Eileen McNeill; Asif J. Iqbal; Jyoti Patel; Gemma E. White; Daniel Regan-Komito; David R. Greaves; Keith M. Channon

Chemokines (CK) provide directional cues that mediate the recruitment of leukocytes to sites of inflammation. Broad-spectrum blockade of the CC-CK family, using the vaccinia virus 35K protein, has been shown to cause a potent reduction of systemic inflammation in models of atherosclerosis, vein graft disease and arthritis. We have used a cell membrane-targeted form of 35K, Mem35K, to probe whether cell-associated blockade of chemokine response is sufficient to reduce cell recruitment in inflammation. In Tie2cre mice, activation of a flox-stop Mem35K transgene directed conditional expression of Mem35K in leukocytes and endothelial cells, confirmed by Western blotting, flow cytometry and immunofluorescence microscopy. This conditional Mem35K expression was sufficient to increase cell surface CCL5 binding and reduce chemotaxis in vitro to CCL5, CCL2 and CCL3 but not to non-CC-CK chemoattractants, LTB4, C5a or chemerin. However, in vivo monocyte recruitment into the peritoneum driven by zymosan or CC-chemokine injection, which was demonstrated to be CC-CK dependent using CCR2−/− mice, was not reduced by Mem35K expression, despite the expression of functional Mem35K protein. These findings highlight differing requirements for cell-associated anti-inflammatory activity in in vitro and in vivo models.Key messageMem35K is a cell-associated CC-chemokine binding protein.Conditional Mem35K transgenic mice show expression Mem35K in leukocytes.Mem35K blocks in vitro primary macrophage chemotaxis specifically towards CC-chemokines.Mem35K expression is not sufficient to reduce inflammation in vivo.The requirements for anti-inflammatory activity in vitro and in vivo are different.


Vascular Pharmacology | 2018

Vascular wall regulator of G-protein signalling-1 (RGS-1) is required for angiotensin II-mediated blood pressure control.

Jyoti Patel; Surawee Chuaiphichai; Gillian Douglas; Caroline M. Gorvin; Keith M. Channon

G-Protein coupled receptors (GPCRs) activate intracellular signalling pathways by coupling to heterotrimeric G-proteins that control many physiological processes including blood pressure homeostasis. The Regulator of G-Protein Signalling-1 (RGS1) controls the magnitude and duration of downstream GPCR signalling by acting as a GTPase-activating protein for specific Gα-proteins. RGS1 has contrasting roles in haematopoietic and non-haematopoietic cells. Rgs1−/−ApoE−/− mice are protected from Angiotensin II (Ang II)-induced aortic aneurysm rupture. Conversely, Ang II treatment increases systolic blood pressure to a greater extent in Rgs1−/−ApoE−/− mice than ApoE−/− mice, independent of its role in myeloid cells. However the precise role of RGS1 in hypertension and vascular-derived cells remains unknown. We determined the effects of Rgs1 deletion on vascular function in ApoE−/− mice. Rgs1 deletion led to enhanced vasoconstriction in aortas and mesenteric arteries from ApoE−/− mice in response to phenylephrine (PE) and U46619 respectively. Rgs1 was shown to have a role in the vasculature, with endothelium-dependent vasodilation being impaired, and endothelium-independent dilatation to SNP being enhanced in Rgs1−/−ApoE−/− mesenteric arteries. To address the downstream signalling pathways in vascular smooth muscle cells (VSMCs) in response to Ang II-stimulation, we assessed pErk1/2, pJNK and pp38 MAPK activation in VSMCs transiently transfected with Rgs1. pErk1/2 signalling but not pJNK and pp38 signalling was impaired in the presence of Rgs1. Furthermore, we demonstrated that the enhanced contractile response to PE in Rgs1−/−ApoE−/− aortas was reduced by a MAPK/Erk (MEK) inhibitor and an L-type voltage gated calcium channel antagonist, suggesting that Erk1/2 signalling and calcium influx are major effectors of Rgs1-mediated vascular contractile responses, respectively. These findings indicate RGS1 is a novel regulator of blood pressure homeostasis and highlight RGS1-controlled signalling pathways in the vasculature that may be new drug development targets for hypertension.


Hypertension | 2018

Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II–Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic AneurysmNovelty and Significance

Surawee Chuaiphichai; Victoria S. Rashbrook; Ashley B. Hale; Lucy Trelfa; Jyoti Patel; Eileen McNeill; Craig A. Lygate; Keith M. Channon; Gillian Douglas

GTPCH (GTP cyclohydrolase 1, encoded by Gch1) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient (Gch1fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1fl/fl Tie2cre mice and a significant increase in the N&ohgr;-nitro-L-arginine methyl ester inhabitable production of H2O2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta.

Collaboration


Dive into the Jyoti Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eileen McNeill

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Ashley B. Hale

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucy Trelfa

Wellcome Trust Centre for Human Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge