Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asif Javed is active.

Publication


Featured researches published by Asif Javed.


sensor, mesh and ad hoc communications and networks | 2006

Distance Matrix Reconstruction from Incomplete Distance Information for Sensor Network Localization

Petros Drineas; Asif Javed; Malik Magdon-Ismail; G. Pandurangan; Reino Virrankoski; A. Savvides

This paper focuses on the principled study of distance reconstruction for distance-based node localization. We address an important issue in node localization by showing that a highly incomplete set of inter-node distance measurements obtained in ad-hoc node deployments carries sufficient information for the accurate reconstruction of the missing distances, even in the presence of noise and sensor node failures. We provide an efficient and provably accurate algorithm for this reconstruction, and we show that the resulting error is bounded, decreasing at a rate that is inversely proportional to radicn, the square root of the number of nodes in the region of deployment. Although this result is applicable to many localization schemes, in this paper we illustrate its use in conjunction with the popular multidimensional scaling algorithm. Our analysis reveals valuable insights and key factors to consider during the sensor network setup phase, to improve the quality of the position estimates


Journal of Medical Genetics | 2010

Ancestry informative markers for fine-scale individual assignment to worldwide populations

Peristera Paschou; Jamey Lewis; Asif Javed; Petros Drineas

Background and aims The analysis of large-scale genetic data from thousands of individuals has revealed the fact that subtle population genetic structure can be detected at levels that were previously unimaginable. Using the Human Genome Diversity Panel as reference (51 populations - 650,000 SNPs), this works describes a systematic evaluation of the resolution that can be achieved for the inference of genetic ancestry, even when small panels of genetic markers are used. Methods and results A comprehensive investigation of human population structure around the world is undertaken by leveraging the power of Principal Components Analysis (PCA). The problem is dissected into hierarchical steps and a decision tree for the prediction of individual ancestry is proposed. A complete leave-one-out validation experiment demonstrates that, using all available SNPs, assignment of individuals to their self-reported populations of origin is essentially perfect. Ancestry informative genetic markers are selected using two different metrics (In and correlation with PCA scores). A thorough cross-validation experiment indicates that, in most cases here, the number of SNPs needed for ancestry inference can be successfully reduced to less than 0.1% of the original 650,000 while retaining close to 100% accuracy. This reduction can be achieved using a novel clustering-based redundancy removal algorithm that is also introduced here. Finally, the applicability of our suggested SNP panels is tested on HapMap Phase 3 populations. Conclusion The proposed methods and ancestry informative marker panels, in combination with the increasingly more comprehensive databases of human genetic variation, open new horizons in a variety of fields, ranging from the study of human evolution and population history, to medical genetics and forensics.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Y-chromosome analysis reveals genetic divergence and new founding native lineages in Athapaskan- and Eskimoan-speaking populations

Matthew C. Dulik; Amanda C. Owings; Jill B. Gaieski; Miguel Vilar; Alestine Andre; Crystal Lennie; Mary Adele Mackenzie; Ingrid Kritsch; Sharon Snowshoe; Ruth Wright; James F. Martin; Nancy Gibson; Thomas D. Andrews; Theodore G. Schurr; Syama Adhikarla; Christina J. Adler; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; ArunKumar GaneshPrasad; Wolfgang Haak; Marc Haber; Angela Hobbs; Asif Javed; Li Jin; Matthew E. Kaplan

For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich’in, and Tłįchǫ populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįchǫ being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized.


Molecular Biology and Evolution | 2012

Recombination gives a new insight in the effective population size and the history of the Old World human populations

Marta Melé; Asif Javed; Marc Pybus; Pierre Zalloua; Marc Haber; David Comas; Mihai G. Netea; Oleg Balanovsky; Elena Balanovska; Li Jin; Yajun Yang; Ramasamy Pitchappan; GaneshPrasad ArunKumar; Laxmi Parida; Francesc Calafell; Jaume Bertranpetit

The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.


Journal of Human Genetics | 2015

Genome-wide signatures of male-mediated migration shaping the Indian gene pool

GaneshPrasad ArunKumar; Tatiana V. Tatarinova; Jeff Duty; Debra Rollo; Adhikarla Syama; Varatharajan Santhakumari Arun; Valampuri John Kavitha; Petr Triska; Bennett Greenspan; R. Spencer Wells; Ramasamy Pitchappan; Christina J Adlera; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; Matthew C. Dulik; Jill B. Gaieski; Wolfgang Haak; Marc Haber; Angela Hobbs; Asif Javed; Li Jin; Matthew E. Kaplan; Shilin Li; Begoña Martínez-Cruz; Elizabeth Matisoo-Smith

Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India.


PLOS Computational Biology | 2010

A New Method to Reconstruct Recombination Events at a Genomic Scale

Marta Melé; Asif Javed; Marc Pybus; Francesc Calafell; Laxmi Parida; Jaume Bertranpetit

Recombination is one of the main forces shaping genome diversity, but the information it generates is often overlooked. A recombination event creates a junction between two parental sequences that may be transmitted to the subsequent generations. Just like mutations, these junctions carry evidence of the shared past of the sequences. We present the IRiS algorithm, which detects past recombination events from extant sequences and specifies the place of each recombination and which are the recombinants sequences. We have validated and calibrated IRiS for the human genome using coalescent simulations replicating standard human demographic history and a variable recombination rate model, and we have fine-tuned IRiS parameters to simultaneously optimize for false discovery rate, sensitivity, and accuracy in placing the recombination events in the sequence. Newer recombinations overwrite traces of past ones and our results indicate more recent recombinations are detected by IRiS with greater sensitivity. IRiS analysis of the MS32 region, previously studied using sperm typing, showed good concordance with estimated recombination rates. We also applied IRiS to haplotypes for 18 X-chromosome regions in HapMap Phase 3 populations. Recombination events detected for each individual were recoded as binary allelic states and combined into recotypes. Principal component analysis and multidimensional scaling based on recotypes reproduced the relationships between the eleven HapMap Phase III populations that can be expected from known human population history, thus further validating IRiS. We believe that our new method will contribute to the study of the distribution of recombination events across the genomes and, for the first time, it will allow the use of recombination as genetic marker to study human genetic variation.


Bioinformatics | 2011

IRiS: Construction of ARG networks at genomic scales

Asif Javed; Marc Pybus; Marta Melé; Filippo Utro; Jaume Bertranpetit; Francesc Calafell; Laxmi Parida

SUMMARY Given a set of extant haplotypes IRiS first detects high confidence recombination events in their shared genealogy. Next using the local sequence topology defined by each detected event, it integrates these recombinations into an ancestral recombination graph. While the current system has been calibrated for human population data, it is easily extendible to other species as well. AVAILABILITY IRiS (Identification of Recombinations in Sequences) binary files are available for non-commercial use in both Linux and Microsoft Windows, 32 and 64 bit environments from https://researcher.ibm.com/researcher/view_project.php?id = 2303 CONTACT [email protected].


Annals of Human Genetics | 2011

Efficient genomewide selection of PCA-correlated tSNPs for genotype imputation.

Asif Javed; Petros Drineas; Michael W. Mahoney; Peristera Paschou

The linkage disequilibrium structure of the human genome allows identification of small sets of single nucleotide polymorphisms (SNPs) (tSNPs) that efficiently represent dense sets of markers. This structure can be translated into linear algebraic terms as evidenced by the well documented principal components analysis (PCA)‐based methods. Here we apply, for the first time, PCA‐based methodology for efficient genomewide tSNP selection; and explore the linear algebraic structure of the human genome. Our algorithm divides the genome into contiguous nonoverlapping windows of high linear structure. Coupling this novel window definition with a PCA‐based tSNP selection method, we analyze 2.5 million SNPs from the HapMap phase 2 dataset. We show that 10–25% of these SNPs suffice to predict the remaining genotypes with over 95% accuracy. A comparison with other popular methods in the ENCODE regions indicates significant genotyping savings. We evaluate the portability of genome‐wide tSNPs across a diverse set of populations (HapMap phase 3 dataset). Interestingly, African populations are good reference populations for the rest of the world. Finally, we demonstrate the applicability of our approach in a real genome‐wide disease association study. The chosen tSNP panels can be used toward genotype imputation using either a simple regression‐based algorithm or more sophisticated genotype imputation methods.


BMC Bioinformatics | 2011

A minimal descriptor of an ancestral recombinations graph

Laxmi Parida; Pier Francesco Palamara; Asif Javed

BackgroundAncestral Recombinations Graph (ARG) is a phylogenetic structure that encodes both duplication events, such as mutations, as well as genetic exchange events, such as recombinations: this captures the (genetic) dynamics of a population evolving over generations.ResultsIn this paper, we identify structure-preserving and samples-preserving core of an ARG G and call it the minimal descriptor ARG of G. Its structure-preserving characteristic ensures that all the branch lengths of the marginal trees of the minimal descriptor ARG are identical to that of G and the samples-preserving property asserts that the patterns of genetic variation in the samples of the minimal descriptor ARG are exactly the same as that of G. We also prove that even an unbounded G has a finite minimal descriptor, that continues to preserve certain (graph-theoretic) properties of G and for an appropriate class of ARGs, our estimate (Eqn 8) as well as empirical observation is that the expected reduction in the number of vertices is exponential.ConclusionsBased on the definition of this lossless and bounded structure, we derive local properties of the vertices of a minimal descriptor ARG, which lend itself very naturally to the design of efficient sampling algorithms. We further show that a class of minimal descriptors, that of binary ARGs, models the standard coalescent exactly (Thm 6).


Scientific Reports | 2017

Aboriginal Australian mitochondrial genome variation – an increased understanding of population antiquity and diversity

Nano Nagle; Mannis van Oven; Stephen Wilcox; Sheila van Holst Pellekaan; Chris Tyler-Smith; Yali Xue; Kaye N. Ballantyne; Leah Wilcox; Luka Papac; Karen Cooke; Roland A.H. van Oorschot; Peter McAllister; Lesley Williams; Manfred Kayser; R. John Mitchell; Syama Adhikarla; Christina J. Adler; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; Matthew C. Dulik; Jill B. Gaieski; ArunKumar GaneshPrasad; Wolfgang Haak; Marc Haber; Angela Hobbs

Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia’s first settlers.

Collaboration


Dive into the Asif Javed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Comas

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marc Haber

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Oleg Balanovsky

Academy of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Melé

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Jin

Stanford University

View shared research outputs
Researchain Logo
Decentralizing Knowledge