Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Melé is active.

Publication


Featured researches published by Marta Melé.


Nature | 2013

Great ape genetic diversity and population history

Javier Prado-Martinez; Peter H. Sudmant; Jeffrey M. Kidd; Heng Li; Joanna L. Kelley; Belen Lorente-Galdos; Krishna R. Veeramah; August E. Woerner; Timothy D. O’Connor; Gabriel Santpere; Alexander Cagan; Christoph Theunert; Ferran Casals; Hafid Laayouni; Kasper Munch; Asger Hobolth; Anders E. Halager; Maika Malig; Jessica Hernandez-Rodriguez; Irene Hernando-Herraez; Kay Prüfer; Marc Pybus; Laurel Johnstone; Michael Lachmann; Can Alkan; Dorina Twigg; Natalia Petit; Carl Baker; Fereydoun Hormozdiari; Marcos Fernandez-Callejo

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The genome of melon (Cucumis melo L.)

Jordi Garcia-Mas; Andrej Benjak; Walter Sanseverino; Michael Bourgeois; Gisela Mir; Victor Gonzalez; Elizabeth Hénaff; Francisco Câmara; Luca Cozzuto; Ernesto Lowy; Tyler Alioto; Salvador Capella-Gutiérrez; José Blanca; Joaquín Cañizares; Pello Ziarsolo; Daniel Gonzalez-Ibeas; Luis Rodríguez-Moreno; Marcus Droege; Lei Du; Miguel Alvarez-Tejado; Belen Lorente-Galdos; Marta Melé; Luming Yang; Yiqun Weng; Arcadi Navarro; Tomas Marques-Bonet; Miguel A. Aranda; Fernando Nuez; Belén Picó; Toni Gabaldón

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site–leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Y-chromosome analysis reveals genetic divergence and new founding native lineages in Athapaskan- and Eskimoan-speaking populations

Matthew C. Dulik; Amanda C. Owings; Jill B. Gaieski; Miguel Vilar; Alestine Andre; Crystal Lennie; Mary Adele Mackenzie; Ingrid Kritsch; Sharon Snowshoe; Ruth Wright; James F. Martin; Nancy Gibson; Thomas D. Andrews; Theodore G. Schurr; Syama Adhikarla; Christina J. Adler; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; ArunKumar GaneshPrasad; Wolfgang Haak; Marc Haber; Angela Hobbs; Asif Javed; Li Jin; Matthew E. Kaplan

For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich’in, and Tłįchǫ populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįchǫ being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized.


Molecular Biology and Evolution | 2012

Recombination gives a new insight in the effective population size and the history of the Old World human populations

Marta Melé; Asif Javed; Marc Pybus; Pierre Zalloua; Marc Haber; David Comas; Mihai G. Netea; Oleg Balanovsky; Elena Balanovska; Li Jin; Yajun Yang; Ramasamy Pitchappan; GaneshPrasad ArunKumar; Laxmi Parida; Francesc Calafell; Jaume Bertranpetit

The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.


BMC Genomics | 2013

The genome sequencing of an albino Western lowland gorilla reveals inbreeding in the wild

Javier Prado-Martinez; Irene Hernando-Herraez; Belen Lorente-Galdos; Marc Dabad; Oscar Ramirez; Carlos Baeza-Delgado; Carlos Morcillo-Suarez; Can Alkan; Fereydoun Hormozdiari; Emanuele Raineri; Jordi Estellé; Marcos Fernandez-Callejo; Mònica Vallés; Lars Ritscher; Torsten Schöneberg; Elisa de la Calle-Mustienes; Sònia Casillas; Raquel Rubio-Acero; Marta Melé; Johannes Engelken; Mario Cáceres; José Luis Gómez-Skarmeta; Marta Gut; Jaume Bertranpetit; Ivo Gut; Teresa Abello; Evan E. Eichler; Ismael Mingarro; Carles Lalueza-Fox; Arcadi Navarro

BackgroundThe only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas.ResultsWe successfully identified the causal genetic variant for Snowflake’s albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake’s parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla.ConclusionsIn this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.


Journal of Computational Biology | 2008

Estimating the Ancestral Recombinations Graph (ARG) as Compatible Networks of SNP Patterns

Laxmi Parida; Marta Melé; Francesc Calafell; Jaume Bertranpetit

Traditionally nonrecombinant genome, i.e., mtDNA or Y chromosome, has been used for phylogeography, notably for ease of analysis. The topology of the phylogeny structure in this case is an acyclic graph, which is often a tree, is easy to comprehend and is somewhat easy to infer. However, recombination is an undeniable genetic fact for most part of the genome. Driven by the need for a more complete analysis, we address the problem of estimating the ancestral recombination graph (ARG) from a collection of extant sequences. We exploit the coherence that is observed in the human haplotypes as patterns and present a network model of patterns to reconstruct the ARG. We test our model on simulations that closely mimic the observed haplotypes and observe promising results.


Journal of Human Genetics | 2015

Genome-wide signatures of male-mediated migration shaping the Indian gene pool

GaneshPrasad ArunKumar; Tatiana V. Tatarinova; Jeff Duty; Debra Rollo; Adhikarla Syama; Varatharajan Santhakumari Arun; Valampuri John Kavitha; Petr Triska; Bennett Greenspan; R. Spencer Wells; Ramasamy Pitchappan; Christina J Adlera; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; Matthew C. Dulik; Jill B. Gaieski; Wolfgang Haak; Marc Haber; Angela Hobbs; Asif Javed; Li Jin; Matthew E. Kaplan; Shilin Li; Begoña Martínez-Cruz; Elizabeth Matisoo-Smith

Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India.


PLOS Computational Biology | 2010

A New Method to Reconstruct Recombination Events at a Genomic Scale

Marta Melé; Asif Javed; Marc Pybus; Francesc Calafell; Laxmi Parida; Jaume Bertranpetit

Recombination is one of the main forces shaping genome diversity, but the information it generates is often overlooked. A recombination event creates a junction between two parental sequences that may be transmitted to the subsequent generations. Just like mutations, these junctions carry evidence of the shared past of the sequences. We present the IRiS algorithm, which detects past recombination events from extant sequences and specifies the place of each recombination and which are the recombinants sequences. We have validated and calibrated IRiS for the human genome using coalescent simulations replicating standard human demographic history and a variable recombination rate model, and we have fine-tuned IRiS parameters to simultaneously optimize for false discovery rate, sensitivity, and accuracy in placing the recombination events in the sequence. Newer recombinations overwrite traces of past ones and our results indicate more recent recombinations are detected by IRiS with greater sensitivity. IRiS analysis of the MS32 region, previously studied using sperm typing, showed good concordance with estimated recombination rates. We also applied IRiS to haplotypes for 18 X-chromosome regions in HapMap Phase 3 populations. Recombination events detected for each individual were recoded as binary allelic states and combined into recotypes. Principal component analysis and multidimensional scaling based on recotypes reproduced the relationships between the eleven HapMap Phase III populations that can be expected from known human population history, thus further validating IRiS. We believe that our new method will contribute to the study of the distribution of recombination events across the genomes and, for the first time, it will allow the use of recombination as genetic marker to study human genetic variation.


Bioinformatics | 2011

IRiS: Construction of ARG networks at genomic scales

Asif Javed; Marc Pybus; Marta Melé; Filippo Utro; Jaume Bertranpetit; Francesc Calafell; Laxmi Parida

SUMMARY Given a set of extant haplotypes IRiS first detects high confidence recombination events in their shared genealogy. Next using the local sequence topology defined by each detected event, it integrates these recombinations into an ancestral recombination graph. While the current system has been calibrated for human population data, it is easily extendible to other species as well. AVAILABILITY IRiS (Identification of Recombinations in Sequences) binary files are available for non-commercial use in both Linux and Microsoft Windows, 32 and 64 bit environments from https://researcher.ibm.com/researcher/view_project.php?id = 2303 CONTACT [email protected].


PLOS ONE | 2011

Similarity in Recombination Rate Estimates Highly Correlates with Genetic Differentiation in Humans

Hafid Laayouni; Ludovica Montanucci; Martin Sikora; Marta Melé; Giovanni Marco Dall'Olio; Belen Lorente-Galdos; Kate McGee; Jan Graffelman; Elena Bosch; David Comas; Arcadi Navarro; Francesc Calafell; Ferran Casals; Jaume Bertranpetit

Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans. We calculated the recombination rates between adjacent pairs of 636,933 common single-nucleotide polymorphism loci in 28 worldwide human populations and analyzed them in relation to genetic distances between populations. We found a strong and highly significant correlation between similarity in the recombination rates corrected for effective population size and genetic differentiation between populations. This correlation is observed at the genome-wide level, but also for each chromosome and when genetic distances and recombination similarities are calculated independently from different parts of the genome. Moreover, and more relevant, this relationship is robustly maintained when considering presence/absence of recombination hotspots. Simulations show that this correlation cannot be explained by biases in the inference of recombination rates caused by haplotype sharing among similar populations. This result indicates a rapid pace of evolution of recombination, within the time span of differentiation of modern humans.

Collaboration


Dive into the Marta Melé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Comas

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Haber

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Oleg Balanovsky

Academy of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Marc Pybus

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Jin

Stanford University

View shared research outputs
Researchain Logo
Decentralizing Knowledge