Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asko Vepsäläinen is active.

Publication


Featured researches published by Asko Vepsäläinen.


International Biodeterioration & Biodegradation | 2002

Fungi and actinobacteria in moisture-damaged building materials — concentrations and diversity

Teija Meklin; Asko Vepsäläinen; Aino Nevalainen

Abstract Modern building materials, once moistened, may provide ecological niches for various microbes that have not been well characterized. The aim of the current study was to determine whether fungal genera and actinobacteria were associated with seven types of moisture-damaged building materials by systematically describing the mycobiota and enumerating fungi and bacteria in these materials. Microbial analyses were obtained from 1140 visibly damaged samples of building material, viz. wood, paper, non-wooden building boards, ceramic products, mineral insulation materials, paints and glues, and plastics. Fungal and bacterial concentrations correlated well ( r =0.6). The range of fungi and bacteria numbers was between 10 0 and 10 8 cfu g −1 in all materials, but significant differences in counts were observed between materials. Highest median concentrations of fungi were observed in wooden and paper materials, and lowest in samples of mineral insulation, ceramic products, and paints and glues. Concentrations of viable bacteria in mineral insulation materials were significantly lower than in wood, paper, ceramic products and plastics. A rich variety of fungi was found in wooden materials, with Penicillium and yeasts occurring most frequently. In paper materials, a clear difference from wood was the more frequent occurrence of Cladosporium and Stachybotrys. The most distinctive finding in gypsum boards was that Stachybotrys was common. Ceramic products and paints and glues seemed to favour Acremonium and Aspergillus versicolor . Yeasts and members of the Sphaeropsidales occurred often in parallel in most materials. This study confirms that microbial growth occurs in many different building materials and shows associations between fungal genera and the type of material.


Science of The Total Environment | 2009

Microbial content of house dust samples determined with qPCR.

Pasi Kaarakainen; Helena Rintala; Asko Vepsäläinen; Aino Nevalainen; Teija Meklin

This study was designed to produce information about microbial concentrations using qPCR and their variation in different seasons and home environments with analyses of two types of house dust samples. Also the correlations between the two types of samples and the reproducibility of the parallel subsamples were studied. Two types of vacuumed house dust samples, rug dust and vacuum cleaner bag dust, were collected in 5 normal urban homes in four different seasons (N=20+20). From all dust samples, five parallel subsamples were subjected to qPCR analyses of 17 microbial species or assay groups of microbes. The highest fungal concentrations were found for the Penicillium/Aspergillus/Paecilomyces variotii group, and for the species Aspergillus penicillioides, Aureobasidium pullulans, Cladosporium cladosporioides and Cladosporium herbarum. These species/groups were present in almost all samples. The two types of dust samples gave similar results for most microbial species or groups analyzed, but in general, concentrations were slightly higher in rug dust than in dust from vacuum cleaner bag. Microbial concentrations varied significantly between different seasons and hence the similarity of samples within home was mainly low. The concentrations varied significantly also between different home environments. The reproducibility of the parallel subsamples was good or moderate for most of the analyzed species or assay groups. However, further studies are needed to fully understand the factors causing variation in these methods. Nevertheless, in order to show actual differences in fungal concentrations between urban homes with no known microbial sources, all dust samples to be compared should be taken during the same season.


Environmental Research | 2008

Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: The effect on biological activity and microbial flora

Kati Huttunen; Helena Rintala; Maija-Riitta Hirvonen; Asko Vepsäläinen; Teija Meklin; Mika Toivola; Aino Nevalainen

Many building-related health problems coincide with moisture damage and mold growth within a building. Their elimination is assumed to improve indoor air quality. The aim of this study was to follow the success of remediation in two individual buildings by analyzing the microbial flora and immunotoxicological activity of filter samples. We compare results from samples collected from indoor air in the moisture-damaged buildings before and after renovation and results from matched reference buildings and outdoor air. The microbial characteristics of the samples were studied by analyzing ergosterol content and determining the composition of fungal flora with quantitative polymerase chain reaction (QPCR). In addition, the concentrations of particles were monitored with optical particle counter (OPC). The immunotoxicological activity of collected particle samples was tested by exposing mouse macrophages (RAW264.7) for 24 h to particle suspension extracted from the filters, and measuring the viability of the exposed cells (MTT-test) and production of inflammatory mediators (nitric oxide, IL-6 and TNF*) in cell culture medium by enzyme-linked immunoassay (ELISA). The results show that for Location 1 the renovation decreased the immunotoxicological activity of the particles collected from damaged building, whereas no difference was detected in the corresponding samples collected from the reference building. Interestingly, only slight differences were seen in the concentration of fungi. In the Location 2, a decrease was seen in the concentration of fungi after the renovation, whereas no effect on the immunotoxicological responses was detected. In this case, the immunotoxicological responses to the indoor air samples were almost identical to those caused by the samples from outdoor air. This indicates that the effects of remediation on the indoor air quality may not necessarily be readily measurable either with microbial or toxicological parameters. This may be associated with different spectrum of harmful agents in different mold and moisture-damaged buildings.


Environmental Science & Technology | 2013

Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays.

Tarja Pitkänen; Hodon Ryu; Michael Elk; Anna-Maria Hokajärvi; Sallamaari Siponen; Asko Vepsäläinen; Pia Räsänen; Jorge W. Santo Domingo

In this study, we evaluated the use of RT-qPCR assays targeting rRNA gene sequences for the detection of fecal bacteria in water samples. We challenged the RT-qPCR assays against RNA extracted from sewage effluent (n = 14), surface water (n = 30), and treated source water (n = 15) samples. Additionally, we applied the same assays using DNA as the qPCR template. The targeted fecal bacteria were present in most of the samples tested, although in several cases, the detection frequency increased when RNA was used as the template. For example, the majority of samples that tested positive for E. coli and Campylobacter spp. in surface waters, and for human-specific Bacteroidales, E. coli, and Enterococcus spp. in treated source waters were only detected when rRNA was used as the original template. The difference in detection frequency using rRNA or rDNA (rRNA gene) was sample- and assay-dependent, suggesting that the abundance of active and nonactive populations differed between samples. Statistical analyses for each population exhibiting multiple quantifiable results showed that the rRNA copy numbers were significantly higher than the rDNA counterparts (p < 0.05). Moreover, the detection frequency of rRNA-based assays were in better agreement with the culture-based results of E. coli, intestinal enterococci, and thermotolerant Campylobacter spp. in surface waters than that of rDNA-based assays, suggesting that rRNA signals were associated to active bacterial populations. Our data show that using rRNA-based approaches significantly increases detection sensitivity for common fecal bacteria in environmental waters. These findings have important implications for microbial water quality monitoring and public health risk assessments.


AMBIO: A Journal of the Human Environment | 2011

Microbial Contamination of Groundwater at Small Community Water Supplies in Finland

Tarja Pitkänen; Päivi Karinen; Ilkka T. Miettinen; Heidi Lettojärvi; Annika Heikkilä; Reetta Maunula; Vesa Aula; Henry Kuronen; Asko Vepsäläinen; Liina-Lotta Nousiainen; Sinikka Pelkonen; Helvi Heinonen-Tanski

The raw water quality and associations between the factors considered as threats to water safety were studied in 20 groundwater supplies in central Finland in 2002–2004. Faecal contaminations indicated by the appearance of Escherichia coli or intestinal enterococci were present in five small community water supplies, all these managed by local water cooperatives. Elevated concentrations of nutrients in raw water were linked with the presence of faecal bacteria. The presence of on-site technical hazards to water safety, such as inadequate well construction and maintenance enabling surface water to enter into the well and the insufficient depth of protective soil layers above the groundwater table, showed the vulnerability of the quality of groundwater used for drinking purposes. To minimize the risk of waterborne illnesses, the vulnerable water supplies need to be identified and appropriate prevention measures such as disinfection should be applied.


Indoor Air | 2015

Determinants, reproducibility, and seasonal variation of bacterial cell wall components and viable counts in house dust

H. K. Leppänen; Martin Täubel; Marjut Roponen; Asko Vepsäläinen; P. Rantakokko; Juha Pekkanen; Aino Nevalainen; E. von Mutius

The objectives of this study were (i) to assess the determinants that affect concentrations of the bacterial cell wall components 3-hydroxy fatty acids (3-OH FAs) and muramic acid and of total viable bacteria and actinomycetes in house dust; and (ii) to examine the seasonal variation and reproducibility of these bacterial cell wall components in house dust. A number of lifestyle and environmental factors, mostly not consistent for different bacterial measures but commonly including the type of dwelling and farming (number of livestock), explained up to 37% of the variation of the bacterial concentrations in 212 homes in Eastern Finland. The reproducibility of 3-OH FAs and muramic acid measurements in house dust were studied in five urban homes and were found to be generally high (ICC 74-84%). Temporal variation observed in repeated sampling of the same home throughout a year was more pronounced for 3-OH FAs determinations (ICC 22%) than for muramic acid (ICC 55-66%). We conclude that determinants vary largely for different types of bacterial measurements in house dust; the measured parameters represent different aspects of the bacterial content indoors. More than one sample is needed to describe bacterial concentrations in house dust in the home environment due to large temporal variation.


Journal of Water and Health | 2016

Comparison of Colilert-18 with miniaturised most probable number method for monitoring of Escherichia coli in bathing water

Ananda Tiwari; Seppo I. Niemelä; Asko Vepsäläinen; Jarkko Rapala; Seija Kalso; Tarja Pitkänen

The purpose of this equivalence study was to compare an alternative method, Colilert-18 Quanti-Tray (ISO 9308-2) with the European bathing water directive (2006/7/EC) reference method, the miniaturised most probable number (MMPN) method (ISO 9308-3), for the analysis of Escherichia coli. Six laboratories analysed a total of 263 bathing water samples in Finland. The comparison was carried out according to ISO 17994:2004. The recovery of E. coli using the Colilert-18 method was 7.0% and 8.6% lower than that of the MMPN method after 48 hours and 72 hours of incubation, respectively. The confirmation rate of presumptive E. coli-positive wells in the Colilert-18 and MMPN methods was high (97.8% and 98.0%, respectively). However, the testing of presumptive E. coli-negative but coliform bacteria-positive (yellow but not fluorescent) Colilert-18 wells revealed 7.3% false negative results. There were more false negatives in the naturally contaminated waters than in the samples spiked with waste water. The difference between the recovery of Colilert-18 and the MMPN method was considered not significant, and subsequently the methods are considered as equivalent for bathing water quality monitoring in Finland. Future bathing water method equivalence verification studies may use the data reported herein. The laboratories should make sure that any wells showing even minor fluorescence will be determined as positive for E. coli.


Mbio | 2017

Indoor microbiota in severely moisture damaged homes and the impact of interventions

Balamuralikrishna Jayaprakash; Rachel I. Adams; Pirkka Kirjavainen; Anne M. Karvonen; Asko Vepsäläinen; Maria Valkonen; Kati Järvi; Michael Sulyok; Juha Pekkanen; Martin Täubel

BackgroundThe limited understanding of microbial characteristics in moisture-damaged buildings impedes efforts to clarify which adverse health effects in the occupants are associated with the damage and to develop effective building intervention strategies. The objectives of this current study were (i) to characterize fungal and bacterial microbiota in house dust of severely moisture-damaged residences, (ii) to identify microbial taxa associated with moisture damage renovations, and (iii) to test whether the associations between the identified taxa and moisture damage are replicable in another cohort of homes. We applied bacterial 16S rRNA gene and fungal ITS amplicon sequencing complemented with quantitative PCR and chemical-analytical approaches to samples of house dust, and also performed traditional cultivation of bacteria and fungi from building material samples.ResultsActive microbial growth on building materials had significant though small influence on the house dust bacterial and fungal communities. Moisture damage interventions—including actual renovation of damaged homes and cases where families moved to another home—had only a subtle effect on bacterial community structure, seen as shifts in abundance weighted bacterial profiles after intervention. While bacterial and fungal species richness were reduced in homes that were renovated, they were not reduced for families that moved houses. Using different discriminant analysis tools, we were able identify taxa that were significantly reduced in relative abundance during renovation of moisture damage. For bacteria, the majority of candidates belonged to different families within the Actinomycetales order. Results for fungi were overall less consistent. A replication study in approximately 400 homes highlighted some of the identified taxa, confirming associations with observations of moisture damage and mold.ConclusionsThe present study is one of the first studies to analyze changes in microbiota due to moisture damage interventions using high-throughput sequencing. Our results suggest that effects of moisture damage and moisture damage interventions may appear as changes in the abundance of individual, less common, and especially bacterial taxa, rather than in overall community structure.


Journal of Exposure Science and Environmental Epidemiology | 2017

Quantitative assessment of microbes from samples of indoor air and dust

Hanna Leppänen; Martin Täubel; Balamuralikrishna Jayaprakash; Asko Vepsäläinen; Pertti Pasanen

Different types of house dust samples are widely used as surrogates of airborne inhalation exposure in studies assessing health effects of indoor microbes. Here we studied—in a quantitative assessment—the representativeness of different house dust samples of indoor air (IA) and investigated seasonality and reproducibility of indoor samples. Microbial exposure was measured five times over 1 year in four rural and five urban Finnish homes. Six sampling methods were used: button inhalable aerosol sampler (actively collected personal and indoor air sampling), settled dust, floor dust, mattress dust and vacuum cleaner dust bag dust; the latter three referred to herein as “reservoir dust samples”. Using quantitative PCR, we quantified the fungal species Cladosporium herbarum, the fungal group Penicillium/Aspergillus/Paecilomyces variotii, total fungal DNA, and Gram-positive and Gram-negative bacteria. We observed significant differences in microbial levels between rural and urban homes, most pronounced for personal air samples. Fungal species and groups but not total fungal DNA in indoor air correlated moderately to well with reservoir dust and with personal air samples. For bacterial groups, the correlations between air and dust were generally lower. Samples of indoor air and settled dust reflected similarly seasonal variation in microbial levels and were also similar compositionally, as assessed by ratios of qPCR markers. In general, determinations from mattress dust and other reservoir samples were better reproducible in repeated assessments over time than from indoor air or settled dust. This study indicates that settled dust reflects the microbial composition of indoor air and responds similarly to environmental determinants. Reservoir dusts tend to predict better microbial levels in indoor air and are more reproducible. Sampling strategies in indoor studies need to be developed based on the study questions and may need to rely on more than one type of sample.


Science of The Total Environment | 2010

The effect of ozonization on furniture dust: microbial content and immunotoxicity in vitro.

Kati Huttunen; Eeva Kauhanen; Teija Meklin; Asko Vepsäläinen; Maija-Riitta Hirvonen; Aino Nevalainen

Moisture and mold problems in buildings contaminate also the furniture and other movable property. If cleaning of the contaminated furniture is neglected, it may continue to cause problems to the occupants even after the moisture-damage repairs. The aim of this study was to determine the effectiveness of high-efficiency ozone treatment in cleaning of the furniture from moisture-damaged buildings. In addition, the effectiveness of two cleaning methods was compared. Samples were vacuumed from the padded areas before and after the treatment. The microbial flora and concentrations in the dust sample were determined by quantitative cultivation and QPCR-methods. The immunotoxic potential of the dust samples was analyzed by measuring effects on cell viability and production of inflammatory mediators in vitro. Concentrations of viable microbes decreased significantly in most of the samples after cleaning. Cleaning with combined steam wash and ozonisation was more effective method than ozonising alone, but the difference was not statistically significant. Detection of fungal species with PCR showed a slight but nonsignificant decrease in concentrations after the cleaning. The immunotoxic potential of the collected dust decreased significantly in most of the samples. However, in a small subgroup of samples, increased concentrations of microbes and immunotoxicological activity were detected. This study shows that a transportable cleaning unit with high-efficiency ozonising is in most cases effective in decreasing the concentrations of viable microbes and immunotoxicological activity of the furniture dust. However, the method does not destroy or remove all fungal material present in the dust, as detected with QPCR analysis, and in some cases the cleaning procedure may increase the microbial concentrations and immunotoxicity of the dust.

Collaboration


Dive into the Asko Vepsäläinen's collaboration.

Top Co-Authors

Avatar

Aino Nevalainen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Martin Täubel

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Maria Valkonen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Tarja Pitkänen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Teija Meklin

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Juha Pekkanen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Balamuralikrishna Jayaprakash

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Helena Rintala

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Anna-Maria Hokajärvi

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Anne M. Karvonen

National Institute for Health and Welfare

View shared research outputs
Researchain Logo
Decentralizing Knowledge