Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Assaf Anyamba is active.

Publication


Featured researches published by Assaf Anyamba.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Prediction of a Rift Valley fever outbreak

Assaf Anyamba; Jean-Paul Chretien; Jennifer Small; Compton J. Tucker; Pierre Formenty; Jason H. Richardson; Seth C. Britch; David Schnabel; Ralph L. Erickson; Kenneth J. Linthicum

El Niño/Southern Oscillation related climate anomalies were analyzed by using a combination of satellite measurements of elevated sea-surface temperatures and subsequent elevated rainfall and satellite-derived normalized difference vegetation index data. A Rift Valley fever (RVF) risk mapping model using these climate data predicted areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. To our knowledge, this is the first prospective prediction of a RVF outbreak.


International Journal of Health Geographics | 2006

Developing global climate anomalies suggest potential disease risks for 2006 – 2007

Assaf Anyamba; Jean-Paul Chretien; Jennifer Small; Compton J. Tucker; Kenneth J. Linthicum

BackgroundEl Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data.ResultsSea surface temperatures (SSTs) in the equatorial east Pacific ocean have anomalously increased significantly during July – October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 – January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications are that the following regions are at increased risk for disease outbreaks: Indonesia, Malaysia, Thailand and most of the southeast Asia Islands for increased dengue fever transmission and increased respiratory illness; Coastal Peru, Ecuador, Venezuela, and Colombia for increased risk of malaria; Bangladesh and coastal India for elevated risk of cholera; East Africa for increased risk of a Rift Valley fever outbreak and elevated malaria; southwest USA for increased risk for hantavirus pulmonary syndrome and plague; southern California for increased West Nile virus transmission; and northeast Brazil for increased dengue fever and respiratory illness.ConclusionThe current development of El Niño conditions has significant implications for global public health. Extremes in climate events with above normal rainfall and flooding in some regions and extended drought periods in other regions will occur. Forecasting disease is critical for timely and efficient planning of operational control programs. In this paper we describe developing global climate anomalies that suggest potential disease risks that will give decision makers additional tools to make rational judgments concerning implementation of disease prevention and mitigation strategies.


Journal of Climate | 2002

From El Niño to La Niña: Vegetation response patterns over East and southern Africa during the 1997-2000 period

Assaf Anyamba; Compton J. Tucker; Robert Mahoney

Abstract During the period 1997–2000, the global climate system experienced a transition from the strongest ENSO warm event this century in 1997/98 to a strong cold event in 1999/2000. Normalized difference vegetation index (NDVI) time series data derived from the Advanced Very High Resolution Radiometer (AVHRR) instrument aboard the NOAA polar-orbiting satellite series were analyzed to resolve the land surface response patterns over Africa during this period. The rearrangement of precipitation patterns induced by the change from El Nino to La Nina conditions had significant effects on biomass production in arid and semiarid lands of Africa as revealed by NDVI anomaly patterns, particularly in equatorial East Africa and southern Africa where the ENSO–precipitation linkage is most pronounced. In general, there was a reversal in NDVI response patterns in East (southern) Africa from positive (negative) during the El Nino in 1997/98 to negative (positive) during the La Nina event in 1999/2000. These changes c...


American Journal of Tropical Medicine and Hygiene | 2010

Prediction, Assessment of the Rift Valley Fever Activity in East and Southern Africa 2006-2008 and Possible Vector Control Strategies

Assaf Anyamba; Kenneth J. Linthicum; Jennifer Small; Seth C. Britch; Edwin W. Pak; Stephane de La Rocque; Pierre Formenty; Allen W. Hightower; Robert F. Breiman; Jean-Paul Chretien; Compton J. Tucker; David Schnabel; Rosemary Sang; Karl Haagsma; Mark Latham; Henry B. Lewandowski; Salih Osman Magdi; Mohamed Mohamed; Patrick M. Nguku; Jean-Marc Reynes; Robert Swanepoel

Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Niño/Southern Oscillation (ENSO) phenomenon, which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and regional elevated sea surface temperatures, elevated rainfall, and satellite derived-normalized difference vegetation index data, we predicted with lead times of 2-4 months areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa, Sudan, and Southern Africa at different time periods from September 2006 to March 2008. Predictions were confirmed by entomological field investigations of virus activity and by reported cases of RVF in human and livestock populations. This represents the first series of prospective predictions of RVF outbreaks and provides a baseline for improved early warning, control, response planning, and mitigation into the future.


Remote Sensing | 2010

Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project

Inbal Becker-Reshef; Christopher O. Justice; Mark Sullivan; Eric F. Vermote; Compton J. Tucker; Assaf Anyamba; Jennifer Small; Edwin W. Pak; Edward J. Masuoka; Jeff Schmaltz; Matthew C. Hansen; Kyle Pittman; Charon Birkett; Derrick Williams; Curt A. Reynolds; Bradley Doorn

In recent years there has been a dramatic increase in the demand for timely, comprehensive global agricultural intelligence. Timely information on global crop production is indispensable for combating the growing stress on the world’s crop production and for securing both short-term and long-term stable and reliable supply of food. Global agriculture monitoring systems are critical to providing this kind of intelligence and global earth observations are an essential component of an effective global agricultural monitoring system as they offer timely, objective, global information on croplands distribution, crop development and conditions as the growing season progresses. The Global Agriculture Monitoring Project (GLAM), a joint NASA, USDA, UMD and SDSU initiative, has built a global agricultural monitoring system that provides the USDA Foreign Agricultural Service (FAS) with timely, easily accessible, scientifically-validated remotely-sensed data and derived products as well as data analysis tools, for crop-condition monitoring and production assessment. This system is an integral component of the USDA’s FAS Decision Support System (DSS) for agriculture. It has significantly improved the FAS crop analysts’ ability to monitor crop conditions, and to quantitatively forecast crop yields through the provision of timely, high-quality global earth observations data in a format customized for FAS alongside a suite of data analysis tools. FAS crop analysts use these satellite data in a ‘convergence of evidence’ approach with meteorological data, field reports, crop models, attache reports and local reports. The USDA FAS is currently the only operational provider of timely, objective crop production forecasts at the global scale. These forecasts are routinely used by the other US Federal government agencies as well as by commodity trading companies, farmers, relief agencies and foreign governments. This paper discusses the operational components and new developments of the GLAM monitoring system as well as the future role of earth observations in global agricultural monitoring.


Cadernos De Saude Publica | 2001

Climate-disease connections: Rift Valley Fever in Kenya

Assaf Anyamba; Kenneth J. Linthicum; Compton J. Tucker

All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Niño/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.


PLOS Neglected Tropical Diseases | 2012

Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

Assaf Anyamba; Kenneth J. Linthicum; Jennifer Small; Katherine M. Collins; Compton J. Tucker; Edwin W. Pak; Seth C. Britch; James Ronald Eastman; Jorge E. Pinzon; Kevin L. Russell

Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.


BMC Public Health | 2011

The AFHSC-Division of GEIS Operations Predictive Surveillance Program: a multidisciplinary approach for the early detection and response to disease outbreaks

Clara J. Witt; Allen L. Richards; Penny Masuoka; Desmond H. Foley; Anna L. Buczak; Lillian Musila; Jason H. Richardson; Michelle G. Colacicco-Mayhugh; Leopoldo M. Rueda; Terry A. Klein; Assaf Anyamba; Jennifer Small; Julie A. Pavlin; Mark M Fukuda; Joel C. Gaydos; Kevin L. Russell

The Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System Operations (AFHSC-GEIS) initiated a coordinated, multidisciplinary program to link data sets and information derived from eco-climatic remote sensing activities, ecologic niche modeling, arthropod vector, animal disease-host/reservoir, and human disease surveillance for febrile illnesses, into a predictive surveillance program that generates advisories and alerts on emerging infectious disease outbreaks. The program’s ultimate goal is pro-active public health practice through pre-event preparedness, prevention and control, and response decision-making and prioritization. This multidisciplinary program is rooted in over 10 years experience in predictive surveillance for Rift Valley fever outbreaks in Eastern Africa. The AFHSC-GEIS Rift Valley fever project is based on the identification and use of disease-emergence critical detection points as reliable signals for increased outbreak risk. The AFHSC-GEIS predictive surveillance program has formalized the Rift Valley fever project into a structured template for extending predictive surveillance capability to other Department of Defense (DoD)-priority vector- and water-borne, and zoonotic diseases and geographic areas. These include leishmaniasis, malaria, and Crimea-Congo and other viral hemorrhagic fevers in Central Asia and Africa, dengue fever in Asia and the Americas, Japanese encephalitis (JE) and chikungunya fever in Asia, and rickettsial and other tick-borne infections in the U.S., Africa and Asia.


PLOS ONE | 2014

Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns.

Assaf Anyamba; Jennifer Small; Seth C. Britch; Compton J. Tucker; Edwin W. Pak; Curt A. Reynolds; James Crutchfield; Kenneth J. Linthicum

We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010–2012 period. We utilized 2000–2012 vegetation index and land surface temperature data from NASAs satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.


Annual Review of Entomology | 2016

Rift Valley Fever: An Emerging Mosquito-Borne Disease*

Kenneth J. Linthicum; Seth C. Britch; Assaf Anyamba

Rift Valley fever (RVF), an emerging mosquito-borne zoonotic infectious viral disease caused by the RVF virus (RVFV) (Bunyaviridae: Phlebovirus), presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant potential for international spread and use in bioterrorism. RVFV has caused large, devastating periodic epizootics and epidemics in Africa over the past ∼60 years, with severe economic and nutritional impacts on humans from illness and livestock loss. In the past 15 years alone, RVFV caused tens of thousands of human cases, hundreds of human deaths, and more than 100,000 domestic animal deaths. Cattle, sheep, goats, and camels are particularly susceptible to RVF and serve as amplifying hosts for the virus. This review highlights recent research on RVF, focusing on vectors and their ecology, transmission dynamics, and use of environmental and climate data to predict disease outbreaks. Important directions for future research are also discussed.

Collaboration


Dive into the Assaf Anyamba's collaboration.

Top Co-Authors

Avatar

Jennifer Small

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. Linthicum

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Compton J. Tucker

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Seth C. Britch

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Edwin W. Pak

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry A. Klein

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Pierre Formenty

World Health Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge