Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Assaf Deutsch is active.

Publication


Featured researches published by Assaf Deutsch.


Lab on a Chip | 2006

A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells.

Mordechai Deutsch; Assaf Deutsch; Orian S. Shirihai; Ihar Hurevich; Elena Afrimzon; Yana Shafran; Naomi Zurgil

The importance of research involving non-adherent cell lines, primary cells and blood cells is generally undisputed. However, the task of investigating the complexity and heterogeneity of these cells calls for their long-run monitoring at a single-cell resolution. Such a capability is currently unavailable without having to use disruptive cell tethering. The present Cell Retainer (CR) concept enables high-content correlative multi-parametric measurements, from the functional to molecular level, of the same living individual non-adherent cells within a population. Thereby, despite extensive long-term bio-manipulations, the cells preserve their identity without tethering. Several exemplary experiments, using a microscope-slide-based version of the CR, are presented, which could not be performed by other state of the art methods.


Biomaterials | 2010

A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.

Yael Markovitz-Bishitz; Yishay Tauber; Elena Afrimzon; Naomi Zurgil; Maria Sobolev; Yana Shafran; Assaf Deutsch; Steffen Howitz; Mordechai Deutsch

Multicellular spheroid models have been recognized as superior to monolayer cell cultures in antitumor drug screening, but their commercial adaptation in the pharmaceutical industry has been delayed, primarily due to technological limitations. The current study presents a new spheroid culture platform that addresses these technical restrictions. The new culturing device is based on a multiwell plate equipped with a glass bottom patterned with an array of UV adhesive microchambers. Each microchamber is designed to accommodate a single spheroid. The system facilitates the simultaneous creation and culturing of a large number of spheroids, as well as screening their response to antitumor drugs. The volume of the spheroids is easily controlled by seeding density. The location of each spheroid is preserved in the same microchamber throughout its growth, treatment with soluble agents, and imaging. The growth ratio parameter, a non-intrusive size analysis of the same spheroid before and after exposure to drugs, was found to be a sensitive indicator for the reaction of MCF7 breast cancer spheroids to cytotoxic drugs. This feature helps reveal the heterogeneity within the spheroid population during the formation process and their drug response, and provides an opportunity to detect specific, highly active or drug-resistant spheroid sub-groups. The advantages of this spheroid-based system make it an efficient drug-screening tool that may be valuable to related fields of research and clinical applications.


Clinical & Experimental Metastasis | 2008

Intracellular esterase activity in living cells may distinguish between metastatic and tumor-free lymph nodes

Elena Afrimzon; Assaf Deutsch; Yana Shafran; Naomi Zurgil; Judith Sandbank; Itzhak Pappo; Mordechai Deutsch

Background One of the major clinical problems in breast cancer detection is the relatively high incidence of occult lymph node metastases undetectable by standard procedures. Since the ascertainment of breast cancer stage determines the following treatment, such a “hypo-diagnosis” leads to inadequate therapy, and hence is detrimental for the outcome and survival of the patients. The purpose of our study was to investigate functional metabolic characteristics of living cells derived from metastatic and tumor-free lymph nodes of breast cancer (BC) patients. Methods Our methodology is based on the ability of living cells to hydrolyze fluorescein diacetate (FDA) by intracellular esterases and on the association of FDA hydrolysis rates with a specific cell status, both in physiological and pathological conditions. Results The present study demonstrates a significant difference in the ability to utilize FDA by lymph node cells derived from metastatic and tumor-free lymph nodes in general average, as well as in the metastatic and tumor-free lymph nodes of individual patients. Cells from metastatic lymph nodes had a higher capacity for FDA hydrolysis, and increased this activity after additional activation by autologous tumor tissue (tt). The association between increased FDA hydrolysis rate and activated T lymphocytes and antigen-presenting cells (APC) was shown. Conclusion The results of the present study may contribute to predicting the risk of involvement of seemingly “tumor-free” axillary lymph nodes in occult metastatic processes, and to reducing false-negative results of axillary examination.


Biomaterials | 2010

Polymer live-cell array for real-time kinetic imaging of immune cells

Naomi Zurgil; Elena Afrimzon; Assaf Deutsch; Yaniv Namer; Yana Shafran; Maria Sobolev; Yishay Tauber; Orit Ravid-Hermesh; Mordechai Deutsch

Direct quantitative experimental investigations of the function of lymphocytes and other immune cells are challenging due to the cell mobility and the complexity of intercellular communications. In order to facilitate such investigations, an in vitro system is required that is noninvasive and provides kinetic data on cellular responses to challenges such as drug treatments. The present work reports the development of a disposable, inexpensive polymer-made device, the Polymer Live Cell Array (PLCA), for real-time, kinetic analysis of immune cells. The PLCA proved to be optically and biologically compatible, thus individual immune cells can be observed and treated independently without being tethered. The cells share a common space which facilitates cellular communications via secreted molecules or via direct intercellular interactions. These properties facilitate real-time, non-intrusive, repeated measurements of immune cells under multiple experimental treatments.


Journal of Biomedical Optics | 2011

Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system

Avraham Mayevsky; Raphael Walden; Eliyahu Pewzner; Assaf Deutsch; Eitan Heldenberg; Jacob Lavee; Salis Tager; Erez Kachel; Ehud Raanani; Sergey Preisman; Violete Glauber; Eran Segal

BACKGROUND The involvement of mitochondria in pathological states, such as neurodegenerative diseases, sepsis, stroke, and cancer, are well documented. Monitoring of nicotinamide adenine dinucleotide (NADH) fluorescence in vivo as an intracellular oxygen indicator was established in 1950 to 1970 by Britton Chance and collaborators. We use a multiparametric monitoring system enabling assessment of tissue vitality. In order to use this technology in clinical practice, the commercial developed device, the CritiView (CRV), is tested in animal models as well as in patients. METHODS AND RESULTS The new CRV enables the optical monitoring of four different parameters, representing the energy balance of various tissues in vivo. Mitochondrial NADH is measured by surface fluorometry/reflectometry. In addition, tissue microcirculatory blood flow, tissue reflectance and oxygenation are measured as well. The device is tested both in vitro and in vivo in a small animal model and in preliminary clinical trials in patients undergoing vascular or open heart surgery. In patients, the monitoring is started immediately after the insertion of a three-way Foley catheter (urine collection) to the patient and is stopped when the patient is discharged from the operating room. The results show that monitoring the urethral wall vitality provides information in correlation to the surgical procedure performed.


Biomedical optics | 2006

The CritiView: a new fiber optic based optical device for the assessment of tissue vitality

Avraham Mayevsky; Yoram Blum; Nava Dekel; Assaf Deutsch; Rafael Halfon; Shlomi Kremer; Eliyahu Pewzner; Efrat Sherman; Ofer Barnea

The most important parameter that reflects the balance between oxygen supply and demand in tissues is the mitochondrial NADH redox state that could be monitored In vivo. Nevertheless single parameter monitoring is limited in the interpretation capacity of the very complicated pathophysiological events, therefore three more parameters were added to the NADH and the multiparametric monitoring system was used in experimental and clinical studies. In our previous paper1 we described the CritiView (CRV1) including a fiber optic probe that monitor four physiological parameters in real time. In the new model (CRV3) several factors such as UV safety, size and price of the device were improved significantly. The CRV3 enable to monitor the various parameters in three different locations in the tissue thus increasing the reliability of the data due to the better statistics. The connection between the device and the monitored tissue could be done by various types of probes. The main probe that was tested also in clinical studies was a special 3 points probe that includes 9 optical fibers (3 in each point) that was embedded in a three way Foley catheter. This catheter enabled the monitoring of urethral wall vitality as an indicator of the development of body metabolic emergency state. The three point probe was tested in the brain exposed to the lack of oxygen (Anoxia, Hypoxia or Ischemia). A decrease in blood oxygenation and a large increase in mitochondrial NADH fluorescence were recorded. The microcirculatory blood flow increased during anoxia and hypoxia and decreased significantly under ischemia.


BMC Cell Biology | 2010

The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. II: Functional activity of cryopreserved cells

Elena Afrimzon; Naomi Zurgil; Yana Shafran; Friederike Ehrhart; Yaniv Namer; Sergei Moshkov; Maria Sobolev; Assaf Deutsch; Steffen Howitz; Martin Greuner; Michael Thaele; Ina Meiser; Heiko Zimmermann; Mordechai Deutsch

BackgroundThe cryopreservation and thawing processes are known to induce many deleterious effects in cells and might be detrimental to several cell types. There is an inherent variability in cellular responses among cell types and within individual cells of a given population with regard to their ability to endure the freezing and thawing process. The aim of this study was to evaluate the fate of cryopreserved cells within an optical cryo apparatus, the individual-cell-based cryo-chip (i3C), by monitoring several basic cellular functional activities at the resolution of individual cells.ResultsIn the present study, U937 cells underwent the freezing and thawing cycle in the i3C device. Then a panel of vital tests was performed, including the number of dead cells (PI staining), apoptotic rate (Annexin V staining), mitochondrial membrane potential (TMRM staining), cytoplasm membrane integrity and intracellular metabolism (FDA staining), as well as post-thawing cell proliferation assays. Cells that underwent the freezing - thawing cycle in i3C devices exhibited the same functional activity as control cells. Moreover, the combination of the multi-parametric analysis at a single cell resolution and the optical and biological features of the device enable an accurate determination of the functional status of individual cells and subsequent retrieval and utilization of the most valuable cells.ConclusionsThe means and methodologies described here enable the freezing and thawing of spatially identifiable cells, as well as the efficient detection of viable, specific, highly biologically active cells for future applications.


BMC Cell Biology | 2010

The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: Methodology

Mordechai Deutsch; Elena Afrimzon; Yaniv Namer; Yana Shafran; Maria Sobolev; Naomi Zurgil; Assaf Deutsch; Steffen Howitz; Martin Greuner; Michael Thaele; Heiko Zimmermann; Ina Meiser; Friederike Ehrhart

BackgroundCryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient.ResultsThe present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing - thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing - thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior.ConclusionsThe results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing - thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.


Optical Fibers and Sensors for Medical Applications II | 2002

Real-time optical monitoring of tissue vitality in vivo

Avraham Mayevsky; Tamar Manor; Eliyahu Pevzner; Assaf Deutsch; Revital Etziony; Nava Dekel

Evaluation of tissue O2 balance (Supply/Demand) could be done by monitoring in real-time 2 out of the 3 components of the tissue O2 balance equation. In our previous publication (Mayevsky et al, SPIE Vol. 4255:33-39, 2001) we had shown the use of the multiparametric monitoring approach in the neurosurgical operating room, using a device combined of laser Doppler flowmeter (LDF) and surface fluorometer reflectometer. The two instruments having two different light sources, were connected to the tissue via a combined bundle of optical fibers. In order to improve the correlation between tissue blood flow and mitochondrial NADH redox state, the new Tissue Spectroscope (TiSpec) that was designed has a single light source and a single bundle of optical fibers. Preliminary results show very clear correlation between TBF and NADH redox state. In addition, the reflected light at the excitation wavelength could be used as an indication for blood volume changes. The results obtained by the TiSpec enabled us to compare tissue O2 delivery (TBF) with O2 balance (NADH redox state) in the brain of gerbils and rats exposed to ischemia, anoxia and spreading depression. Real-time monitoring of the metabolic state of the tissue has immense potential during surgical procedures.


Biomedical optics | 2004

Brain physiological state evaluated by real-time multiparametric tissue spectroscopy in vivo

Avraham Mayevsky; Efrat Barbiro-Michaely; Hofit Kutai-Asis; Assaf Deutsch; Alex Jaronkin

The significance of normal mitochondrial function in cellular energy homeostasis as well as its involvement in acute and chronic neurodegenerative disease was reviewed recently (Nicholls & Budd. Physiol Rev. 80: 315-360, 2000). Nevertheless, monitoring of mitochondrial function in vivo and real time mode was not used by many investigators and is very rare in clinical practice. The main principle tool available for the evaluation of mitochondrial function is the monitoring of NADH fluorescence. In order to interpret correctly the changes in NADH redox state in vivo, it is necessary to correlate this signal to other parameters, reflecting O2 supply to the brain. Therefore, we have developed and applied a multiparametric optical monitoring system, by which microcirculatory blood flow and hemoglobin oxygenation is measured, together with mitochondrial NADH fluorescence. Since the calibration of these signals is not in absolute units, the simultaneous monitoring provide a practical tool for the interpretation of brain functional state under various pathophysiological conditions. The monitoring system combines a time-sharing fluorometer-reflectometer for the measurement of NADH fluorescence and hemoglobin oxygenation as well as a laser Doppler flowmeter for the recording of microcirculatory blood flow. A combined fiber optic probe was located on the surface of the brain using a skull cemented cannula. Rats and gerbils were exposed to anoxia, ischemia and spreading depression and the functional state of the brain was evaluated. The results showed a clear correlation between O2 supply/demand as well as, energy balance under the various pathophysiological conditions. This monitoring approach could be adapted to clinical monitoring of tissue vitality.

Collaboration


Dive into the Assaf Deutsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge