Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi Zurgil is active.

Publication


Featured researches published by Naomi Zurgil.


Lab on a Chip | 2006

A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells.

Mordechai Deutsch; Assaf Deutsch; Orian S. Shirihai; Ihar Hurevich; Elena Afrimzon; Yana Shafran; Naomi Zurgil

The importance of research involving non-adherent cell lines, primary cells and blood cells is generally undisputed. However, the task of investigating the complexity and heterogeneity of these cells calls for their long-run monitoring at a single-cell resolution. Such a capability is currently unavailable without having to use disruptive cell tethering. The present Cell Retainer (CR) concept enables high-content correlative multi-parametric measurements, from the functional to molecular level, of the same living individual non-adherent cells within a population. Thereby, despite extensive long-term bio-manipulations, the cells preserve their identity without tethering. Several exemplary experiments, using a microscope-slide-based version of the CR, are presented, which could not be performed by other state of the art methods.


Biomaterials | 2010

A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.

Yael Markovitz-Bishitz; Yishay Tauber; Elena Afrimzon; Naomi Zurgil; Maria Sobolev; Yana Shafran; Assaf Deutsch; Steffen Howitz; Mordechai Deutsch

Multicellular spheroid models have been recognized as superior to monolayer cell cultures in antitumor drug screening, but their commercial adaptation in the pharmaceutical industry has been delayed, primarily due to technological limitations. The current study presents a new spheroid culture platform that addresses these technical restrictions. The new culturing device is based on a multiwell plate equipped with a glass bottom patterned with an array of UV adhesive microchambers. Each microchamber is designed to accommodate a single spheroid. The system facilitates the simultaneous creation and culturing of a large number of spheroids, as well as screening their response to antitumor drugs. The volume of the spheroids is easily controlled by seeding density. The location of each spheroid is preserved in the same microchamber throughout its growth, treatment with soluble agents, and imaging. The growth ratio parameter, a non-intrusive size analysis of the same spheroid before and after exposure to drugs, was found to be a sensitive indicator for the reaction of MCF7 breast cancer spheroids to cytotoxic drugs. This feature helps reveal the heterogeneity within the spheroid population during the formation process and their drug response, and provides an opportunity to detect specific, highly active or drug-resistant spheroid sub-groups. The advantages of this spheroid-based system make it an efficient drug-screening tool that may be valuable to related fields of research and clinical applications.


Cytometry | 2000

Analysis of Enzyme Kinetics in Individual Living Cells Utilizing Fluorescence Intensity and Polarization Measurements

Mordechai Deutsch; Menachem Kaufman; Howard M. Shapiro; Naomi Zurgil

BACKGROUND The Cellscan mark-S (CS-S) scanning cytometer was used for tracing enzymatic reactions in the same individual cells under various physiological conditions over periods of minutes. On-line reagent addition and changes in the experimental conditions (buffers, ions, substrates and inhibitors) were performed. METHODS Kinetic events were monitored by fluorescence intensity (FI) and fluorescence polarization (FP) measurements of fluorescein diacetate (FDA) and chloromethyl fluorescein diacetate (CMFDA) intracellular hydrolysis. FP measurements have been used to assess the intracellular markers mobility restrictions. RESULTS Kinetic measurement along 1000 s of FDA labeled individual Jurkat T cells, indicated variation of 65% for FI(t) and approximately 10% for FP(t). While FI increased linearly with time, FP(t) decreased nonlinearly and asymptotically, reaching a constant value. The FP(t) of CMFDA-labeled cells was different from that of FDA-labeled cells. Average cellular Km of 3.9 microM was calculated from individual cell FDA hydrolysis curves. CONCLUSIONS (1) Analysis of the reaction kinetics of intracellular enzymes can be refined by using FP measurements of the products of fluorogenic substrates in addition to the FI measurements. (2) Subpopulations or individual cells could be classified according to their reaction rates. (3) A specific dependence of FP(t) on type of enzyme substrate is suggested.


Clinical & Experimental Metastasis | 2008

Intracellular esterase activity in living cells may distinguish between metastatic and tumor-free lymph nodes

Elena Afrimzon; Assaf Deutsch; Yana Shafran; Naomi Zurgil; Judith Sandbank; Itzhak Pappo; Mordechai Deutsch

Background One of the major clinical problems in breast cancer detection is the relatively high incidence of occult lymph node metastases undetectable by standard procedures. Since the ascertainment of breast cancer stage determines the following treatment, such a “hypo-diagnosis” leads to inadequate therapy, and hence is detrimental for the outcome and survival of the patients. The purpose of our study was to investigate functional metabolic characteristics of living cells derived from metastatic and tumor-free lymph nodes of breast cancer (BC) patients. Methods Our methodology is based on the ability of living cells to hydrolyze fluorescein diacetate (FDA) by intracellular esterases and on the association of FDA hydrolysis rates with a specific cell status, both in physiological and pathological conditions. Results The present study demonstrates a significant difference in the ability to utilize FDA by lymph node cells derived from metastatic and tumor-free lymph nodes in general average, as well as in the metastatic and tumor-free lymph nodes of individual patients. Cells from metastatic lymph nodes had a higher capacity for FDA hydrolysis, and increased this activity after additional activation by autologous tumor tissue (tt). The association between increased FDA hydrolysis rate and activated T lymphocytes and antigen-presenting cells (APC) was shown. Conclusion The results of the present study may contribute to predicting the risk of involvement of seemingly “tumor-free” axillary lymph nodes in occult metastatic processes, and to reducing false-negative results of axillary examination.


Biomaterials | 2010

Polymer live-cell array for real-time kinetic imaging of immune cells

Naomi Zurgil; Elena Afrimzon; Assaf Deutsch; Yaniv Namer; Yana Shafran; Maria Sobolev; Yishay Tauber; Orit Ravid-Hermesh; Mordechai Deutsch

Direct quantitative experimental investigations of the function of lymphocytes and other immune cells are challenging due to the cell mobility and the complexity of intercellular communications. In order to facilitate such investigations, an in vitro system is required that is noninvasive and provides kinetic data on cellular responses to challenges such as drug treatments. The present work reports the development of a disposable, inexpensive polymer-made device, the Polymer Live Cell Array (PLCA), for real-time, kinetic analysis of immune cells. The PLCA proved to be optically and biologically compatible, thus individual immune cells can be observed and treated independently without being tethered. The cells share a common space which facilitates cellular communications via secreted molecules or via direct intercellular interactions. These properties facilitate real-time, non-intrusive, repeated measurements of immune cells under multiple experimental treatments.


Journal of Biomedical Optics | 2005

Tracing apoptosis and stimulation in individual cells by fluorescence intensity and anisotropy decay.

Dror Fixler; Reuven Tirosh; Naomi Zurgil; Mordechai Deutsch

Presented is the use of fluorescence lifetime (FLT), anisotropy decay, and associated parameters as differential indicators of cellular activity. A specially designed combination of a frequency mode based time resolved microscope and a picoliter well-per-cell array have been used to perform temporal measurements in individual cells under various biological conditions. Two biological models have been examined: mitogenic activation of peripheral blood mononuclear cells (PBMC) and induction of programmed cell death (apoptosis) in Jurkat T cells (JTC). The FLT of fluorescein stained PBMC was found to increase from 4+/-0.02 to 4.5+/-0.025 ns due to mitogenic activation, whereas during apoptosis in fluorescein stained JTC, the FLT remained constant. Notably, the rotational correlation times changed in both models: decreased in PBMC from 2.5+/-0.08 to 2+/-0.1 ns, and increased in JTC from 2.1+/-0.07 to 3.3+/-0.09 ns. FLT and rotational correlation time were used to calculate the steady state fluorescence anisotropy (FA) which was compared to directly measured FA values. The present study suggests that in addition to bioindication, the said parameters can provide valuable information about cellular mechanisms that may involve complex molecular diffusion dynamics, as well as information about structural changes that a cellular fluorophore undergoes in the course of cell activation.


Immunological Investigations | 2004

The immunosuppressive effect of methotrexate in active rheumatoid arthritis patients vs. its stimulatory effect in nonactive patients, as indicated by cytometric measurements of CD4+ T cell subpopulations.

Shoshy Herman; Naomi Zurgil; Pnina Langevitz; Michael Ehrenfeld; Mordechai Deutsch

This cytometric study assesses the effects of methotrexate (MTX) on the expanded CD4 + lymphocyte population in active and nonactive rheumatoid arthritis (RA) patients. In the active patients, MTX was found to reduce the predominant CD4 + CD28+ subpopulation (by 30%), and the minor subpopulation of CD4 + CD28− (by 34%). The incidence of CD25 phenotype was downregulated by 15%. These reductions can be attributed to immunosuppression through apoptosis, which was demonstrated by MTX‐induced fluorescein diacetate (FDA) hyperpolarization (an established indicator of early apoptosis). In contrast, in nonactive RA patients, the major CD4 + CD28+ subpopulation of small lymphocytes appeared to be activated by MTX, subsequently transforming into a major hyperblast population, whereas the minor CD4 + CD28− subpopulation was not affected by MTX treatment. The activation by MTX in this group of patients is evidenced by MTX‐induced FDA depolarization (an indicator of early activation). Thus, MTX immunosuppressive effect on CD4 + subsets was found in active patients, whereas immunostimulation by MTX was shown in non‐active patients. The found discriminative effect of MTX may suggest a higher effectiveness of low‐dose MTX therapy in active RA patients.


Cell Biochemistry and Biophysics | 2004

Monitoring the apoptotic process induced by oxidized low-density lipoprotein in Jurkat T-lymphoblast and U937 monocytic human cell lines

Naomi Zurgil; Inna Solodeev; Boris Gilburd; Yana Shafran; Elena Afrimzon; Rami Avtalion; Yehuda Shoenfeld; Mordechai Deutsch

Cell death is a major event in the pathophysiology of atherosclerosis. Oxidized low-density lipoprotein (Ox-LDL), which plays a key role in the atherogenesis, has a powerful cytotoxic effect and causes necrosis or apoptosis of different types of cells. In the present work we studied the mechanism of cell death in two model systems: T lymphocytes and monocytes cell line, exposed to Ox-LDL. Ox-LDL, but not native low-density lipoprotein (LDL), was found to be cytotoxic to both cell types in a dose and time dependent manner. Apoptotic cell deat was analyzed by evaluating cell size, nucleus DNA content and plasma membrane asymmetry. Early cytoplasmic condensation resulting from cell shrinkage was measured by monitoring fluorescence polarization (FP) of fluorescein labeled cells. The redical scavenger superoxide dismutase (SOD), in a time- and dose-dependent manner, reduced the apoptotic effect of Ox-LDL. Hyperpolarization of fluorescein-labeled cells preceded the appearance of phosphatidylserine (PS) on the plasma membrane. This sensitive parameter for early apoptosis detected different cell death kinetics, as well as varying sensitivity to the inhibitory effect of SOD in monocytes and lymphocytes. Such data suggest that reactive oxygen species generation are involved, in Ox-LDL-induced apoptosis and that monocytes are more susceptible to cell death triggered by oxidative stress.


Journal of Immunological Methods | 1999

Determination of cellular thiol levels in individual viable lymphocytes by means of fluorescence intensity and polarization

Naomi Zurgil; Menachem Kaufman; Inna Solodiev; Mordechai Deutsch

Cellular thiol levels regulate lymphocyte proliferation and death and play a significant role in the immune response. Therefore, the ability to analyze the total protein and non-protein thiol compounds and their distribution among individual living lymphocytes is of great importance. A quantitative measurement of intracellular sulphydryl groups in living lymphocytes using the Cellscan mark F (CS-F) cytometer, in conjunction with the probe CMFDA, is described. This technique permits the detection, identification, and study of sub-populations and single cells in a sample of heterogeneous lymphocytes. The Cellscan apparatus is a laser based scanning cytometer incorporating a unique cell carrier which allows repeated, high-precision measurements of fluorescence intensity (FI) and fluorescence polarization (FP) to be made on intact individual living cells under controlled physiological conditions. The discernible effect of fluorophore molecules bound to thiols having a higher FP than free molecules was used to estimate their relative fractions in living lymphocytes. The results were more conspicuous when the ratio between FP measured at two wavelengths (FPR) of the fluorogenic molecules was used for analysis. In addition, the intracellular dynamic changes in the FI, FP and FPR of the fluorescent probe were also monitored. The cellular sulphydryl content of each lymphocyte within a population was recorded by the CS-F, and sub-populations or individual cells were classified according to their thiol levels and their metabolic rates. Changes in thiol concentration were observed following mitogenic activation of peripheral lymphocytes.


Biophysical Journal | 2002

Fluorescence resonance energy transfers measurements on cell surfaces via fluorescence polarization.

Meir Cohen-Kashi; Sergey Moshkov; Naomi Zurgil; Mordechai Deutsch

A method has been developed for the determination of the efficiency of fluorescence resonance energy transfer efficiency between moieties located on cell surfaces by performing individual cell fluorescence polarization (FP) measurements. The absolute value of energy transfer efficiency (E) is calculated on an individual cell basis. The examination of this methodology was carried out using model experiments on human T lymphocyte cells. The cells were labeled with fluorescein-conjugated Concanavalin A (ConA) as donor, or rhodamine-conjugated ConA as acceptor. The experiments and results clearly indicate that determination of E via FP measurements is possible, efficient, and more convenient than other methods.

Collaboration


Dive into the Naomi Zurgil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge