Astrid-Caroline Knall
Graz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Astrid-Caroline Knall.
Journal of the American Chemical Society | 2015
Sarah Holliday; Raja Shahid Ashraf; Christian B. Nielsen; Mindaugas Kirkus; Jason A. Röhr; Ching Hong Tan; Elisa Collado-Fregoso; Astrid-Caroline Knall; James R. Durrant; Jenny Nelson; Iain McCulloch
A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.
Advanced Functional Materials | 2015
Andrew MacLachlan; Thomas Rath; Ute B. Cappel; Simon A. Dowland; Heinz Amenitsch; Astrid-Caroline Knall; Christine Buchmaier; Gregor Trimmel; Jenny Nelson; Saif A. Haque
In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.
Monatshefte Fur Chemie | 2015
Manuel Hollauf; Gregor Trimmel; Astrid-Caroline Knall
Herein, highlights from the recent literature regarding functional dye-polymer conjugates obtained by ring opening metathesis polymerization (ROMP) are presented and the different approaches to incorporate dyes during the initiation, propagation, and termination step in ROMP are discussed. Applications in the field of chemical sensors, bioimaging, electroactive materials, self-assembly, photochromic and photoreactive materials are used to illustrate the versatility of ROMP as a technique to prepare complex functional materials.Graphical abstract
Organic and Biomolecular Chemistry | 2016
Astrid-Caroline Knall; Manuel Hollauf; Robert Saf; Christian Slugovc
The feasibility of a one pot approach for conducting mutually orthogonal thiol-Michael addition, copper catalyzed azide-alkyne and inverse electron demand Diels-Alder click chemistry on a tri-functional substrate was demonstrated.
ACS Applied Materials & Interfaces | 2014
Sebastian Dunst; Thomas Rath; Andrea Radivo; Enrico Sovernigo; Massimo Tormen; Heinz Amenitsch; Benedetta Marmiroli; Barbara Sartori; Angelika Reichmann; Astrid-Caroline Knall; Gregor Trimmel
In this paper, we investigate conjugated polymer layers structured by nanoimprint lithography toward their suitability for the fabrication of nanostructured polymer/metal sulfide hybrid solar cells. Consequently, we first study the thermal stability of the nanoimprinted conjugated polymer layers by means of scanning electron microscopy and grazing incidence small-angle X-ray scattering, which reveals a reasonable thermal stability up to 145 °C and sufficient robustness against the solvent mixture used in the subsequent fabrication process. In the second part, we demonstrate the preparation of nanostructured polymer/copper indium sulfide hybrid solar cells via the infiltration and thermal decomposition of a mixture of copper and indium xanthates. Although this step needs temperatures of more than 160 °C, the nanostructures are retained in the final polymer/copper indium sulfide layers. The nanostructured solar cells show significantly improved power conversion efficiencies compared to similarly prepared flat bilayer devices, which is based on a distinct improvement of the short circuit current in the nanostructured solar cells.
Nature Communications | 2018
Ada Onwubiko; Wan Yue; Cameron Jellett; Mingfei Xiao; Hung-Yang Chen; Mahesh Kumar Ravva; David Hanifi; Astrid-Caroline Knall; Balaji Purushothaman; Mark Nikolka; Jean-Charles Flores; Alberto Salleo; Jean-Luc Brédas; Henning Sirringhaus; Pascal Hayoz; Iain McCulloch
Conventional semiconducting polymer synthesis typically involves transition metal-mediated coupling reactions that link aromatic units with single bonds along the backbone. Rotation around these bonds contributes to conformational and energetic disorder and therefore potentially limits charge delocalisation, whereas the use of transition metals presents difficulties for sustainability and application in biological environments. Here we show that a simple aldol condensation reaction can prepare polymers where double bonds lock-in a rigid backbone conformation, thus eliminating free rotation along the conjugated backbone. This polymerisation route requires neither organometallic monomers nor transition metal catalysts and offers a reliable design strategy to facilitate delocalisation of frontier molecular orbitals, elimination of energetic disorder arising from rotational torsion and allowing closer interchain electronic coupling. These characteristics are desirable for high charge carrier mobilities. Our polymers with a high electron affinity display long wavelength NIR absorption with air stable electron transport in solution processed organic thin film transistors.Semiconducting polymers are usually prepared by transition metal mediated coupling reactions that cause problems for sustainability and biological applications. Here the authors synthesise fused electron deficient polymers that are air stable and have high electron affinities, via metal free aldol polymerisation reactions.
RSC Advances | 2016
Christine Buchmaier; Thomas Rath; Franz Pirolt; Astrid-Caroline Knall; Petra Kaschnitz; Otto Glatter; Karin Wewerka; Ferdinand Hofer; Birgit Kunert; Kurt Krenn; Gregor Trimmel
Herein, we investigate a synthetic approach to prepare copper indium sulfide nanocrystals at room temperature. The nanocrystals have a chalcopyrite crystal structure, a diameter of approximately 3 nm and are well soluble in organic solvents like toluene or chloroform. The synthesis is performed by dissolving metal xanthates as precursors together with oleylamine in toluene followed by stirring for several hours at room temperature leading to nanocrystals stabilized with oleylamine ligands. The nanoparticles are characterized in terms of inner structure by X-ray diffraction, transmission electron microscopy, Raman-, absorption- and photoluminescence spectroscopy. Their formation process is investigated by small angle X-ray scattering, UV-Vis absorption spectroscopy and NMR spectroscopy. The formation of the copper indium sulfide nanocrystals proceeds via a chemical reaction of the amine with the thiocarbonyl functionality of the xanthate. The presented method exemplifies a synthesis strategy, which can be easily expanded to other metal sulfide nanocrystals.
Monatshefte Fur Chemie | 2017
Manuel Hollauf; Merima Čajlaković; Martin Tscherner; Stefan Köstler; Astrid-Caroline Knall; Gregor Trimmel
Highly fluorescent and photostable (2-alkyl)-1H-benzo[de]isoquinoline-1,3(2H)-diones with a polymerizable norbornene scaffold have been synthesized and polymerized using ring-opening metathesis polymerization. The monomers presented herein could be polymerized in a living fashion, using different comonomers and different monomer ratios. All obtained materials showed good film-forming properties and bright fluorescence caused by the incorporated push–pull chromophores. Additionally, one of the monomers containing a methylpiperazine functionality showed protonation-dependent photoinduced electron transfer which opens up interesting applications for logic gates and sensing.Graphical abstract
Journal of Materials Chemistry C | 2017
Manuel Hollauf; Peter W. Zach; Sergey M. Borisov; Bernhard J. Müller; D. Beichel; Martin Tscherner; Stefan Köstler; Paul Hartmann; Astrid-Caroline Knall; Gregor Trimmel
In this paper we introduce and compare different terpolymers comprising covalently attached sensitizer and emitter chromophores for the use as a light up-converting material via triplet–triplet annihilation (TTA). Using the advantages of ring opening metathesis polymerisation it was possible to prepare five different polymer architectures in order to investigate the influence of polymer architecture and chromophore arrangement on the photon up-conversion behaviour. First, two new monomers containing the chromophores have been synthesized and characterized in regard to their photophysical characteristics suitable for triplet–triplet annihilation dye pair. For this purpose, a derivative of Pt(II) meso-tetraphenyltetra(tert-butyl)benzoporphyrin as sensitizer and a perylenediester as emitter were attached to norbornene moieties via ester linkages. Polymerisations of these monomeric chromophores were performed in combination with dimethyl 5-norbornene-2,3-dicarboxylate as matrix monomer. Depending on the location of the dye molecules on the polymer chain, large differences in the TTA efficiency were observed. The best quantum yields have been achieved with a completely statistically distributed terpolymer showing an up-conversion quantum yield of up to 3% in solution.
Scanning | 2014
Quan Shen; Matthias Edler; Thomas Griesser; Astrid-Caroline Knall; Gregor Trimmel; Wolfgang Kern; Christian Teichert
Photolithographic methods allow an easy lateral top-down patterning and tuning of surface properties with photoreactive molecules and polymers. Employing friction force microscopy (FFM), we present here different FFM-based methods that enable the characterization of several photoreactive thin organic surface layers. First, three ex situ methods have been evaluated for the identification of irradiated and non-irradiated zones on the same organosilane sample by irradiation through different types of masks. These approaches are further extended to a time dependent ex situ FFM measurement, which allows to study the irradiation time dependent evolution of the resulting friction forces by sequential irradiation through differently sized masks in crossed geometry. Finally, a newly designed in situ FFM measurement, which uses a commercial bar-shaped cantilever itself as a noncontact shadow mask, enables the determination of time dependent effects on the surface modification during the photoreaction. SCANNING 36:590–598, 2014.