Astrid Lewin
Robert Koch Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Astrid Lewin.
PLOS ONE | 2011
Jutta Sharbati; Astrid Lewin; Barbara Kutz-Lohroff; Elisabeth Kamal; Ralf Einspanier; Soroush Sharbati
Background Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. Methodology/Principal Findings We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR). The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. Conclusions/Significance We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response. In addition, functional relevance was confirmed by uncovering the control of major caspases 3 and 7 by let-7e and miR-29a, respectively.
Emerging Infectious Diseases | 2013
Mireia Coscolla; Astrid Lewin; Sonja Metzger; Kerstin Maetz-Rennsing; Sébastien Calvignac-Spencer; Andreas Nitsche; Pjotr Wojtek Dabrowski; Aleksandar Radonić; Stefan Niemann; Julian Parkhill; Emmanuel Couacy-Hymann; Julia Feldman; Iñaki Comas; Christophe Boesch; Sebastien Gagneux; Fabian H. Leendertz
Tuberculosis (TB) is caused by gram-positive bacteria known as the Mycobacterium tuberculosis complex (MTBC). MTBC include several human-associated lineages and several variants adapted to domestic and, more rarely, wild animal species. We report an M. tuberculosis strain isolated from a wild chimpanzee in Côte d’Ivoire that was shown by comparative genomic and phylogenomic analyses to belong to a new lineage of MTBC, closer to the human-associated lineage 6 (also known as M. africanum West Africa 2) than to the other classical animal-associated MTBC strains. These results show that the general view of the genetic diversity of MTBC is limited and support the possibility that other MTBC variants exist, particularly in wild mammals in Africa. Exploring this diversity is crucial to the understanding of the biology and evolutionary history of this widespread infectious disease.
BMC Microbiology | 2008
Astrid Lewin; Daniela Baus; Elisabeth Kamal; Fabienne Bon; Ralph Kunisch; Sven Maurischat; Michaela K. Adonopoulou; Katharina Eich
BackgroundPathogenic mycobacteria such as M. tuberculosis, M. bovis or M. leprae are characterised by their extremely slow growth rate which plays an important role in mycobacterial virulence and eradication of the bacteria. Various limiting factors influence the generation time of mycobacteria, and the mycobacterial DNA-binding protein 1 (MDP1) has also been implicated in growth regulation. Our strategy to investigate the role of MDP1 in mycobacterial growth consisted in the generation and characterisation of a M. bovis BCG derivative expressing a MDP1-antisense gene.ResultsThe expression rate of the MDP1 protein in the recombinant M. bovis BCG containing the MDP1-antisense plasmid was reduced by about 50% compared to the reference strain M. bovis BCG containing the empty vector. In comparison to this reference strain, the recombinant M. bovis BCG grew faster in broth culture and reached higher cell masses in stationary phase. Likewise its intracellular growth in mouse and human macrophages was ameliorated. Bacterial clumping in broth culture was reduced by the antisense plasmid. The antisense plasmid increased the susceptibility of the bacteria towards Ampicillin. 2-D protein gels of bacteria maintained under oxygen-poor conditions demonstrated a reduction in the number and the intensity of many protein spots in the antisense strain compared to the reference strain.ConclusionThe MDP1 protein has a major impact on various growth characteristics of M. bovis BCG. It plays an important role in virulence-related traits such as aggregate formation and intracellular multiplication. Its impact on the protein expression in a low-oxygen atmosphere indicates a role in the adaptation to the hypoxic conditions present in the granuloma.
Letters in Applied Microbiology | 2014
Annesha Lahiri; J. Kneisel; I. Kloster; Elisabeth Kamal; Astrid Lewin
The nontuberculous mycobacteria (NTM) are a heterogeneous group of bacteria found in soil, water and dust. The spread of NTM infection depends on the exposure to reservoirs with high proportions of mycobacteria, the virulence of the NTM strains, the enhanced sensitivity to infections such as those of immune‐compromised hosts and patient risk factors such as Cystic Fibrosis. Since several decades, NTM lung disease has been increasingly observed in slender postmenopausal women. The most important NTM in Germany is Mycobacterium avium ssp. hominissuis (MAH). The routes of MAH infection are in almost all cases unknown, but water is often suspected as source of infection. We wanted to examine this hypothesis by determining the frequency of MAH in environmental samples of water, biofilms, soil and dust originating from Germany. We found MAH in 33% of the dust samples and 20% of the soil samples. No MAH could be isolated from water and biofilm. Dust and soil clearly presented more abundance of MAH in comparison with water and biofilms. Therefore, more attention should be paid to soil and dust in Germany as an important source of Myco. avium infections.
Journal of Biological Chemistry | 2012
Makoto Niki; Mamiko Niki; Yoshitaka Tateishi; Yuriko Ozeki; Teruo Kirikae; Astrid Lewin; Yusuke Inoue; Makoto Matsumoto; John L. Dahl; Hisashi Ogura; Kazuo Kobayashi; Sohkichi Matsumoto
Background: The mechanism underlying mycobacterial phenotypic tolerance to isoniazid is unknown. Results: MDP1, a mycobacterial histone-like protein, down-regulates KatG expression. Conclusion: Down-regulation of KatG by MDP1 causes growth phase-dependent phenotypic tolerance to isoniazid in mycobacteria. Significance: Understanding the mechanism by which mycobacteria acquire tolerance to isoniazid is important for developing novel therapies. Tuberculosis remains one of the most deadly infectious diseases worldwide and is a leading public health problem. Although isoniazid (INH) is a key drug for the treatment of tuberculosis, tolerance to INH necessitates prolonged treatment, which is a concern for effective tuberculosis chemotherapy. INH is a prodrug that is activated by the mycobacterial enzyme, KatG. Here, we show that mycobacterial DNA-binding protein 1 (MDP1), which is a histone-like protein conserved in mycobacteria, negatively regulates katG transcription and leads to phenotypic tolerance to INH in mycobacteria. Mycobacterium smegmatis deficient for MDP1 exhibited increased expression of KatG and showed enhanced INH activation compared with the wild-type strain. Expression of MDP1 was increased in the stationary phase and conferred growth phase-dependent tolerance to INH in M. smegmatis. Regulation of KatG expression is conserved between M. smegmatis and Mycobacterium tuberculosis complex. Artificial reduction of MDP1 in Mycobacterium bovis BCG was shown to lead to increased KatG expression and susceptibility to INH. These data suggest a mechanism by which phenotypic tolerance to INH is acquired in mycobacteria.
Cytokine | 2013
Ashutosh Kumar; Astrid Lewin; Pittu Sandhya Rani; Insaf A. Qureshi; Savita Devi; Mohammad Majid; Elisabeth Kamal; Stefanie Marek; Seyed E. Hasnain; Niyaz Ahmed
Mycobacterium tuberculosis, the cause of tuberculosis in humans, is present approximately in one third of the worlds population, mostly in a dormant state. The proteins encoded by the dormancy survival regulon (DosR regulon) are mainly responsible for survival of the bacilli in a latent form. To maintain latency, mycobacteria orchestrate a balanced interplay of different cytokines secreted by immune cells during the granulomatous stage. The function of most of the DosR regulon proteins of M. tuberculosis is unknown. In this study, we have shown that one of the DosR regulon proteins, DATIN, encoded by the gene Rv0079, can stimulate macrophages and peripheral blood mononuclear cells (PBMC) to secrete important cytokines that may be significant in granuloma formation and its maintenance. The expression level of DATIN in Mycobacterium bovis BCG was found to be upregulated in pH stress and microaerobic conditions. Computational modeling, docking and simulation study suggested that DATIN might interact with TLR2. This was further confirmed through the interaction of recombinant DATIN with TLR2 expressed by HEK293 cells. When in vitro differentiated THP-1 cells were treated with recombinant DATIN, increased secretion of TNF-α, IL-1β and IL-8 was observed in a dose dependent manner. When differentiated THP-1 cells were infected with a modified BCG strain that overexpressed DATIN, augmented secretions of TNF-α, IL-1β and IL-8 were observed as compared to a reference BCG strain containing empty vector. Similarly, human PBMCs when infected with M. bovis BCG that overexpressed DATIN, upregulated secretion of proinflammatory cytokines IFN-γ, TNF-α, IL-1β and IL-8. The cytokine profiles dissected herein point to a possible role of DATIN in maintenance of latency with the help of the proinflammatory responses.
Transgenic Research | 1998
Astrid Lewin; Daniela Jacob; Barbara Freytag; Bernd Appel
The regulation of gene expression represents a specific process which has different structural and functional requirements in different groups of organisms. It is thus assumed that regulatory sequences of eucaryotes cannot be recognized in procaryotes. This assumption is of interest for risk assessments of the environmental impact of deliberate release experiments with genetically modified organisms. In order to analyse the extent of heterologous gene expression caused by the transfer of plant-specific regulatory sequences into bacteria, we constructed fusions between plant-specific regulatory sequences and the coding regions of the luxAB genes for the luciferase of the bioluminescent bacterium Vibrio harveyi, transferred the fusions into different bacterial species and measured the luminescence to quantify the expression of the luciferase genes. The regulatory sequences investigated included (a) the 35S promoter of the Cauliflower mosaic virus, (b) the B33 promoter of a class I patatin gene of potatoes, (c) the promoter of the ST-LS1 gene of potatoes and (d) the promoter of the rolC gene of Agrobacterium rhizogenes. We could show that in addition to the 35S promoter, which has already been described as being recognized in Escherichia coli, the sequences containing the B33 and the ST-LS1 promoters are recognized in bacteria. Luciferase gene expression promoted by the sequence with the ST-LS1 promoter could be observed in E. coli, Yersinia enterocolitica and Agrobacterium tumefaciens. Comparison of the luminescence caused by fusions between luxAB and different promoters on the chromosome and on an endogenous plasmid of Y. enterocolitica demonstrated that the level of the heterologous gene expression caused by the fragment with the ST-LS1 promoter was within the range of gene expression levels caused by endogenous promoters of Y. enterocolitica.
Transgenic Research | 2002
Daniela Jacob; Astrid Lewin; Beate Meister; Bernd Appel
During evolution the promoter elements from prokaryotes and eukaryotes have developed differently with regard to their sequence and structure, implying that in general a transfer of eukaryotic promoter sequences into prokaryotes will not cause an efficient gene expression. However, there have been reports on the functionality of the 35S promoter from cauliflower mosaic virus (CaMV) in bacteria. We therefore decided to experimentally investigate the capability of plant promoter sequences to direct gene expression in various bacteria. Accordingly, we tested ten different plant-specific promoters from Solanum tuberosum, Nicotiana tabacum, CaMV, Agrobacterium tumefaciens, and A. rhizogenes for their ability to initiate transcription in five different eubacterial species (Escherichia coli, Yersinia enterocolitica, A. tumefaciens, Pseudomonas putida, and Acinetobacter sp. BD413). To monitor the strength of the plant-specific promoters in bacteria we created fusions between these promoters and the coding region of the luciferase genes from Vibrio harveyi and measured the luminescence in the bacteria. Heterologous gene expression was observed in 50% of the combinations analysed. We then mapped the transcription start site caused by one of the plant-specific promoters, the ST-LS1 promoter from S. tuberosum, in these bacterial species. The location of the mapped transcription start site indicated that the sequences of the plant promoter themselves were recognised by the bacterial transcription apparatus. The recognition of plant-specific promoter sequences by the bacterial RNA polymerase was further confirmed by site-directed mutagenesis of the ST-LS1 promoter and the analysis of the effects of the mutations on the strength of gene expression in E. coli. Using these mutants in our reporter assays we could localise the sequences of the ST-LS1 promoter serving as –10 region in E. coli. The results of our study show that promoter sequences are much less specific than is generally assumed. This is of great importance for our knowledge about the evolution of gene expression systems and for the construction of optimised expression vectors.
Zentralblatt Fur Bakteriologie-international Journal of Medical Microbiology Virology Parasitology and Infectious Diseases | 1996
Astrid Lewin; Eckhard Strauch; Stefan Hertwig; Bernd Hoffmann; Herbert Nattermann; Bernd Appel
The plasmid content of apathogenic Y. enterocolitica biovar 1A strains was determined and the plasmids were compared with the virulence plasmid of a pathogenic Y. enterocolitica strain. About 38% of the selected biovar 1A strains contained plasmids of different sizes ranging from 2.7 kb to more than 70 kb. Some of the larger plasmids had a size similar to that of the virulence plasmid of a pathogenic reference strain. The restriction patterns of these plasmids were different from the restriction pattern of the virulence plasmid of the pathogenic reference strain. Differences were also observed in hybridization studies with the virulence plasmid. The plasmids from 15 out of 16 biovar 1A strains showed no homology, whereas the plasmid of one biovar 1A strain partially hybridized to the virulence plasmid.
PLOS ONE | 2012
Ashutosh Kumar; Mohammad Majid; Ralph Kunisch; Pittu Sandhya Rani; Insaf A. Qureshi; Astrid Lewin; Seyed E. Hasnain; Niyaz Ahmed
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a ‘dormancy associated translation inhibitor’ or DATIN.