Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Astrid Nehlig is active.

Publication


Featured researches published by Astrid Nehlig.


Brain Research Reviews | 1992

Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects.

Astrid Nehlig; Jean-Luc Daval; Gérard Debry

Caffeine is the most widely consumed central-nervous-system stimulant. Three main mechanisms of action of caffeine on the central nervous system have been described. Mobilization of intracellular calcium and inhibition of specific phosphodiesterases only occur at high non-physiological concentrations of caffeine. The only likely mechanism of action of the methylxanthine is the antagonism at the level of adenosine receptors. Caffeine increases energy metabolism throughout the brain but decreases at the same time cerebral blood flow, inducing a relative brain hypoperfusion. Caffeine activates noradrenaline neurons and seems to affect the local release of dopamine. Many of the alerting effects of caffeine may be related to the action of the methylxanthine on serotonin neurons. The methylxanthine induces dose-response increases in locomotor activity in animals. Its psychostimulant action on man is, however, often subtle and not very easy to detect. The effects of caffeine on learning, memory, performance and coordination are rather related to the methylxanthine action on arousal, vigilance and fatigue. Caffeine exerts obvious effects on anxiety and sleep which vary according to individual sensitivity to the methylxanthine. However, children in general do not appear more sensitive to methylxanthine effects than adults. The central nervous system does not seem to develop a great tolerance to the effects of caffeine although dependence and withdrawal symptoms are reported.


Neuroscience & Biobehavioral Reviews | 1999

Are we dependent upon coffee and caffeine? A review on human and animal data.

Astrid Nehlig

Caffeine is the most widely used psychoactive substance and has been considered occasionally as a drug of abuse. The present paper reviews available data on caffeine dependence, tolerance, reinforcement and withdrawal. After sudden caffeine cessation, withdrawal symptoms develop in a small portion of the population but are moderate and transient. Tolerance to caffeine-induced stimulation of locomotor activity has been shown in animals. In humans, tolerance to some subjective effects of caffeine seems to occur, but most of the time complete tolerance to many effects of caffeine on the central nervous system does not occur. In animals, caffeine can act as a reinforcer, but only in a more limited range of conditions than with classical drugs of dependence. In humans, the reinforcing stimuli functions of caffeine are limited to low or rather moderate doses while high doses are usually avoided. The classical drugs of abuse lead to quite specific increases in cerebral functional activity and dopamine release in the shell of the nucleus accumbens, the key structure for reward, motivation and addiction. However, caffeine doses that reflect the daily human consumption, do not induce a release of dopamine in the shell of the nucleus accumbens but lead to a release of dopamine in the prefrontal cortex, which is consistent with caffeine reinforcing properties. Moreover, caffeine increases glucose utilization in the shell of the nucleus accumbens only at rather high doses that stimulate most brain structures, non-specifically, and likely reflect the side effects linked to high caffeine ingestion. That dose is also 5-10-fold higher than the one necessary to stimulate the caudate nucleus, which mediates motor activity and the structures regulating the sleep-wake cycle, the two functions the most sensitive to caffeine. In conclusion, it appears that although caffeine fulfils some of the criteria for drug dependence and shares with amphetamines and cocaine a certain specificity of action on the cerebral dopaminergic system, the methylxanthine does not act on the dopaminergic structures related to reward, motivation and addiction.


Neuroscience | 1999

Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy

Viviane Bouilleret; V Ridoux; Antoine Depaulis; Christian Marescaux; Astrid Nehlig

Human mesial temporal lobe epilepsy is characterized by hippocampal seizures associated with pyramidal cell loss in the hippocampus and dispersion of dentate gyrus granule cells. A similar histological pattern was recently described in a model of extensive neuroplasticity in adult mice after injection of kainate into the dorsal hippocampus [Suzuki et al. (1995) Neuroscience 64, 665-674]. The aim of the present study was to determine whether (i) recurrent seizures develop in mice after intrahippocampal injection of kainate, and (ii) the electroencephalographic, histopathological and behavioural changes in such mice are similar to those in human mesial temporal lobe epilepsy. Adult mice receiving a unilateral injection of kainate (0.2 microg; 50 nl) or saline into the dorsal hippocampus displayed recurrent paroxysmal discharges on the electroencephalographic recordings associated with immobility, staring and, occasionally, clonic components. These seizures started immediately after kainate injection and recurrid for up to eight months. Epileptiform activities occurred most often during sleep but occasionally while awake. The pattern of seizures did not change over time nor did they secondarily generalize. Glucose metabolic changes assessed by [14C]2-deoxyglucose autoradiography were restricted to the ipsilateral hippocampus for 30 days, but had spread to the thalamus by 120 days after kainate. Ipsilateral cell loss was prominent in hippocampal pyramidal cells and hilar neurons. An unusual pattern of progressive enlargement of the dentate gyrus was observed with a marked radial dispersion of the granule cells associated with reactive astrocytes. Mossy fibre sprouting occurred both in the supragranular molecular layer and infrapyramidal stratum oriens layer of CA3. The expression of the embryonic form of the neural cell adhesion molecule coincided over time with granule cell dispersion. Our data describe the first histological, electrophysiological and behavioural evidence suggesting that discrete excitotoxic lesions of the hippocampus in mice can be used as an isomorphic model of mesial temporal lobe epilepsy.


Epilepsia | 2002

Magnetic Resonance Imaging in the Study of the Lithium–Pilocarpine Model of Temporal Lobe Epilepsy in Adult Rats

Catherine Roch; Claire Leroy; Astrid Nehlig; Izzie Jacques Namer

Summary:  Purpose: In temporal lobe epilepsy, it remains to be clarified whether hippocampal sclerosis is the cause or the consequence of epilepsy. We studied the temporal evolution of the lesions in the lithium–pilocarpine model of epilepsy in the rat with magnetic resonance imaging (MRI) to determine the progressive morphologic changes occurring before the appearance of chronic epilepsy.


Life Sciences | 1991

Physiological and pharmacological properties of adenosine : therapeutic implications

Jean-Luc Daval; Astrid Nehlig; Frédéric Nicolas

Adenosine is a nucleoside which has been shown to participate in the regulation of physiological activity in a variety of mammalian tissues, and has been recognized as a homeostatic neuromodulator. It exerts its actions via membrane-bound receptors which have been characterized using biochemical, electrophysiological and radioligand binding techniques. Adenosine has been implicated in the pharmacological actions of several classes of drugs. A number of studies strongly suggest that the nucleoside may regulate cellular activity in many pathological disorders and, in that respect, adenosine derivatives appear as promising candidates for the development of new therapeutic compounds, such as anticonvulsant, anti-ischemic, analgesic and neuroprotective agents.


Experimental Neurology | 2001

Relationship between Neuronal Loss and Interictal Glucose Metabolism during the Chronic Phase of the Lithium-Pilocarpine Model of Epilepsy in the Immature and Adult Rat

Céline Dubé; Sylvette Boyet; Christian Marescaux; Astrid Nehlig

The lithium-pilocarpine (Li-Pilo) model of epilepsy reproduces most of the features of human temporal lobe epilepsy. After having studied the metabolic changes occurring during the silent phase, in the present study, we explored the relationship between interictal metabolic changes and neuronal loss during the chronic phase following status epilepticus (SE) induced by Li-Pilo in 10-day-old (P10), 21-day-old (P21), and adult rats. Rats were observed and their EEG was recorded to detect the occurrence of spontaneous recurrent seizures (SRS). Local cerebral glucose utilization was measured during the interictal period of the chronic phase, between 2 and 7 months after SE, by the [(14)C]2-deoxyglucose method in rats subjected to SE at P10, P21, or as adults. Neuronal damage was assessed by cell counting on adjacent cresyl violet stained sections. When SE was induced at P10, rats did not become epileptic, did not develop lesions and cerebral glucose utilization was in the normal range 7 months later. When SE was induced in adult rats, they all became epileptic after a mean duration of 25 days and developed lesions in the forebrain limbic areas, which were hypometabolic during the interictal period of the chronic phase, 2 months after SE. When SE was induced in P21 rats, 24% developed SRS, and in 43% seizures could be triggered (TS) by handling, after a mean delay of 74 days in both cases. The remaining 33% did not become epileptic (NS). The three groups of P21 rats developed quite comparable lesions mainly in the hilus of the dentate gyrus, lateral thalamus, and entorhinal cortex; at 6 months after SE, the forebrain was hypometabolic in NS and TS rats while it was normo- to slightly hypermetabolic in SRS rats. These data show that interictal metabolic changes are age-dependent. Moreover, there is no obvious correlation, in this model, between interictal hypometabolism and neuronal loss, as reported previously in human temporal lobe epilepsy.


Neurotoxicology and Teratology | 1994

Potential teratogenic and neurodevelopmental consequences of coffee and caffeine exposure: a review on human and animal data.

Astrid Nehlig; Gérard Debry

The teratogenic effect of caffeine has been clearly demonstrated in rodents. The sensitivity of different animals species is variable. Malformations have been demonstrated in mice at 50-75 mg/kg of caffeine, whereas the lowest dose usually needed to induce malformations is 80 mg/kg in rats. However, when caffeine is administered in fractioned amounts during the day, 330 mg/kg/day are necessary to reach teratogenicity in rats. In rodents, the most frequently observed malformations are those of the limbs and digits, ectrodactyly, craniofacial malformations (labial and palatal clefts) and delays in ossification of limbs, jaw and sternum. Nevertheless, even in rodents, caffeine can be considered as a weak teratogenic agent, given the quite large quantities of caffeine necessary to induce malformations and the small number of animals affected. In humans, caffeine does not present any teratogenic risk. The increased risk of the most common congenital malformations entailed by moderate consumption of caffeine is very slight. However, caffeine potentiates the teratogenic effect of other substances, such as tobacco, alcohol, and acts synergistically with ergotamine and propranolol to induce materno-fetal vasoconstrictions leading to malformations induced by ischemia. Therefore, even though caffeine does not seem to be harmful to the human fetus when intake is moderate and spread out over the day, some associations, especially with alcohol, tobacco, and vasoconstrictive or anti-migraine medications should be avoided. Maternal consumption of caffeine affects brain composition, especially in case of a low-protein diet and also seems to interfere with zinc fixation in brain. Maternal exposure to caffeine induces also long-term consequences on sleep, locomotion, learning abilities, emotivity, and anxiety in rat offspring, whereas in humans, more studies are needed to ascertain long-term behavioral effects of caffeine ingestion by pregnant mothers.


Neurobiology of Disease | 2004

Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy.

Brigitte Voutsinos-Porche; Estelle Koning; Hervé Kaplan; Arielle Ferrandon; Moncef Guenounou; Astrid Nehlig; Jacques Motte

To better understand the role of inflammatory responses in temporal lobe epilepsy, we characterized Interleukin1-beta (IL1-beta), Nuclear Factor-kappaB (NF-kappaB), and Cyclooxygenase-2 (COX-2) expression together with neurodegeneration in the rat lithium-pilocarpine model. The immunohistochemical expression of IL1-beta, NF-kappaB, and COX-2 started by 12 h post-injection, persisted for 24 h (status epilepticus period), and returned to basal levels by 3 and 6 days (latent period). The regional distribution of IL1-beta, NF-kappaB, and COX-2 occurred mainly in structures prone to develop neuronal damage. Using double-staining protocols, we detected IL1-beta expression in glial cells, COX-2 expression in neurons, and NF-kappaB in both cell types. The presence of Fluoro-Jade-B-positive degenerating neurons was associated with IL1-beta, NF-kappaB, and COX-2 proteins expression during status epilepticus but not during the latent period while neurons were still degenerating. These data suggest that seizure-related IL1-beta, NF-kappaB, and COX-2 expression may contribute to the pathophysiology of epilepsy by inducing neuronal death and astrocytic activation.


Journal of Cerebral Blood Flow and Metabolism | 1999

Correlation between Hypermetabolism and Neuronal Damage during Status Epilepticus Induced by Lithium and Pilocarpine in Immature and Adult Rats

Maria José da Silva Fernandes; Céline Dubé; Sylvette Boyet; Christian Marescaux; Astrid Nehlig

The correlation between seizure-induced hypermetabolism and subsequent neuronal damage was studied in 10-day-old (P10), 21-day-old (P21), and adult rats subjected to lithium-pilocarpine status epilepticus (SE). Local CMRglc (LCMRglc) values were measured by the [14C]2-deoxyglucose method for a duration of 45 minutes starting at 60 minutes after the onset of SE, and neuronal damage was assessed by cresyl violet staining at 6 days after SE. In P21 and adult rats, LCMRglc values were increased by 275 to 875% in all thalamic, cortical, forebrain, and hypothalamic regions plus the substantia nigra. In addition, at P21 there were also large increases in LCMRglc in brainstem regions. In P10 rats, metabolic increases were mostly located in cortical and forebrain regions plus the substantia nigra but did not affect hypothalamic, thalamic, or brainstem areas. In adult rats, there was an anatomical correlation between hypermetabolism and neuronal damage. At P21, although hypermetabolism occurred in regions with damage, the extent of damage varied considerably with the animals and ranged from an almost negligible to a very extended degree. Finally, in P10 rats, although quite pronounced hypermetabolism occurred, there was no neuronal damage induced by the seizures. Thus, in the present model of epilepsy, the correlation between marked hypermetabolism and neuronal damage can be shown in adult rats. Conversely, immature rats can sustain major metabolic activations that lead either to a variable extent of damage, as seen at P21, or no damage, as recorded at P10.


Neurochemistry International | 2006

Neuronal–glial interactions in rats fed a ketogenic diet

Torun M. Melø; Astrid Nehlig; Ursula Sonnewald

Glucose is the preferred energy substrate for the adult brain. However, during periods of fasting and consumption of a high fat, low carbohydrate (ketogenic) diet, ketone bodies become major brain fuels. The present study was conducted to investigate how the ketogenic diet influences neuronal-glial interactions in amino acid neurotransmitter metabolism. Rats were kept on a standard or ketogenic diet. After 21 days all animals received an injection of [1-(13)C]glucose plus [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from cerebral cortex and plasma were analyzed by (13)C and (1)H nuclear magnetic resonance spectroscopy and HPLC. Increased amounts of valine, leucine and isoleucine and a decreased amount of glutamate were found in the brains of rats receiving the ketogenic diet. Glycolysis was decreased in ketotic rats compared with controls, evidenced by the reduced amounts of [3-(13)C]alanine and [3-(13)C]lactate. Additionally, neuronal oxidative metabolism of [1-(13)C]glucose was decreased in ketotic rats compared with controls, since amounts of [4-(13)C]glutamate and [4-(13)C]glutamine were lower than those of controls. Although the amount of glutamate from [1-(13)C]glucose was decreased, this was not the case for GABA, indicating that relatively more [4-(13)C]glutamate is converted to GABA. Astrocytic metabolism was increased in response to ketosis, shown by increased amounts of [4,5-(13)C]glutamine, [4,5-(13)C]glutamate, [1,2-(13)C]GABA and [3,4-(13)C]-/[1,2-(13)C]aspartate derived from [1,2-(13)C]acetate. The pyruvate carboxylation over dehydrogenation ratio for glutamine was increased in the ketotic animals compared to controls, giving further indication of increased astrocytic metabolism. Interestingly, pyruvate recycling was higher in glutamine than in glutamate in both groups of animals. An increase in this pathway was detected in glutamate in response to ketosis. The decreased glycolysis and oxidative metabolism of glucose as well as the increased astrocytic metabolism, may reflect adaptation of the brain to ketone bodies as major source of fuel.

Collaboration


Dive into the Astrid Nehlig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edouard Hirsch

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Izzie Jacques Namer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Sonnewald

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Daniele Suzete Persike

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge