Astrid R. Mach-Aigner
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Astrid R. Mach-Aigner.
Applied and Environmental Microbiology | 2008
Astrid R. Mach-Aigner; Marion E. Pucher; Matthias G. Steiger; Gudrun E. Bauer; Sonja J. Preis; Robert L. Mach
ABSTRACT In Hypocrea jecorina, Xyr1 (xylanase regulator 1) is the main transcription activator of hydrolase-encoding genes, such as xyn1, xyn2, bxl1, cbh1, cbh2, egl1, and bgl1. Even though Xyr1 mediates the induction signal for all these genes derived from various inducing carbon sources and compounds, xyr1 transcription itself is not inducible by any of these substances. However, cultivation on glucose as the carbon source provokes carbon catabolite repression of xyr1 transcription mediated by Cre1. In addition, xyr1 transcription is repressed by the specific transcription factor Ace1. Moreover, Xyr1 is permanently available in the cell, and no de novo synthesis of this factor is needed for a first induction of xyn1 transcription. The constitutive expression of xyr1 leads to a significant elevation/deregulation of the xyn1, xyn2, and bxl1 transcription compared to what is seen for the parental strain. Overall, the corresponding xylanolytic enzyme activities are clearly elevated in a constitutively xyr1-expressing strain, emphasizing this factor as an auspicious target for genetically engineered strain improvement.
Applied and Environmental Microbiology | 2011
Matthias G. Steiger; Marika Vitikainen; Pekka Uskonen; Kurt Brunner; Gerhard Adam; Tiina Pakula; Merja Penttilä; Markku Saloheimo; Robert L. Mach; Astrid R. Mach-Aigner
ABSTRACT Hypocrea jecorina is an industrially important filamentous fungus due to its effective production of hydrolytic enzymes. It has received increasing interest because of its ability to convert lignocellulosic biomass to monomeric sugars, which can be converted into biofuels or platform chemicals. Genetic engineering of strains is a highly important means of meeting the requirements of tailor-made applications. Therefore, we report the development of a transformation system that allows highly efficient gene targeting by using a tmus53 (human LIG4 homolog) deletion strain. Moreover, it permits the unlimited reuse of the same marker by employing a Cre/loxP-based excision system. Both marker insertion and marker excision can be positively selected for by combining resistance to hygromycin B and loss of sensitivity to fluoroacetamide. Finally, the marker pyr4, also positively selectable for insertion and loss, can be used to remove the cre gene.
Journal of Biotechnology | 2010
Matthias G. Steiger; Robert L. Mach; Astrid R. Mach-Aigner
Hypocrea jecorina is an important, filamentous fungus due to its effective production of hydrolytic enzymes. Gene expression studies provide deeper insight into environment sensing and cellular response mechanisms. Reverse transcription-quantitative PCR is a gene-specific and powerful tool to measure even minor changes in mRNA composition. An accurate normalization strategy is absolutely necessary for appropriate interpretation of reverse transcription-quantitative PCR results. One frequently applied strategy is the usage of a reference gene. Adequate reference genes for Hypocrea have not been published so far. By using the NormFinder and geNorm softwares, we evaluated the most stable genes amongst six potential reference genes in 34 samples from diverse cultivation conditions. Under those experimental conditions, sar1 encoding for a small GTPase was found to be the most stable gene, whereas act encoding for actin was not amongst the best validated ones. The influence of the reference system on the expression data is demonstrated by analysis of two target genes, encoding for the Xylanase regulator 1 and for Xylanase II. We further validated obtained xylanase 2 transcription rates with the corresponding enzyme activity.
Biotechnology for Biofuels | 2013
Christian Derntl; Loreta Gudynaite-Savitch; Sophie Calixte; Theresa C. White; Robert L. Mach; Astrid R. Mach-Aigner
BackgroundTrichoderma reesei is an organism involved in degradation of (hemi)cellulosic biomass. Consequently, the corresponding enzymes are commonly used in different types of industries, and recently gained considerable importance for production of second-generation biofuel. Many industrial T. reesei strains currently in use are derived from strain Rut-C30, in which cellulase and hemicellulase expression is released from carbon catabolite repression. Nevertheless, inducing substances are still necessary for a satisfactory amount of protein formation.ResultsHere, we report on a T. reesei strain, which exhibits a very high level of xylanase expression regardless if inducing substances (e.g. D-xylose, xylobiose) are used. We found that a single point mutation in the gene encoding the Xylanase regulator 1 (Xyr1) is responsible for this strong deregulation of endo-xylanase expression and, moreover, a highly elevated basal level of cellulase expression. This point mutation is localized in a domain that is common in binuclear zinc cluster transcription factors. Only the use of sophorose as inducer still leads to a slight induction of cellulase expression. Under all tested conditions, the formation of cbh1 and cbh2 transcript level strictly follows the transcript levels of xyr1. The correlation of xyr1 transcript levels and cbh1/cbh2 transcript levels and also their inducibility via sophorose is not restricted to this strain, but occurs in all ancestor strains up to the wild-type QM6a.ConclusionsEngineering a key transcription factor of a target regulon seems to be a promising strategy in order to increase enzymes yields independent of the used substrate or inducer. The regulatory domain where the described mutation is located is certainly an interesting research target for all organisms that also depend so far on certain inducing conditions.
Applied and Environmental Microbiology | 2010
Astrid R. Mach-Aigner; Marion E. Pucher; Robert L. Mach
ABSTRACT For Hypocrea jecorina (anamorph Trichoderma reesei), a filamentous fungus used for hydrolase production in different industries, it has been a long-term practice to use d-xylose as an inducing substance. We demonstrate in this study that the degree of xylanase-encoding gene induction strictly depends on the concentration of d-xylose, which was found to be optimal from 0.5 to 1 mM for 3 h of cultivation. At higher concentrations of d-xylose, a reduced level of xylanase gene expression was observed. In the present study, we also provide evidence that the d-xylose concentration-dependent induction is antagonized by carbon catabolite repressor 1. This repressor mediates its influence on d-xylose indirectly, by reducing the expression of xylanase regulator 1, the main activator of most hydrolase-encoding genes. Additionally, a direct influence of the repressor on xylanase 1 expression in the presence of d-xylose was found. Furthermore, we show that d-xylose reductase 1 is needed to metabolize d-xylose to achieve full induction of xylanase expression. Finally, a strain which expresses xylanase regulator 1 at a constant level was used to partially overcome the negative influence exerted by carbon catabolite repressor 1 on d-xylose.
Fungal Genetics and Biology | 2014
Sylvia Klaubauf; Hari Mander Narang; Harm Post; Miaomiao Zhou; Kurt Brunner; Astrid R. Mach-Aigner; Robert L. Mach; Albert J. R. Heck; A. F. Maarten Altelaar; Ronald P. de Vries
The transcriptional activator XlnR (Xlr1/Xyr1) is a major regulator in fungal xylan and cellulose degradation as well as in the utilization of d-xylose via the pentose catabolic pathway. XlnR homologs are commonly found in filamentous ascomycetes and often assumed to have the same function in different fungi. However, a comparison of the saprobe Aspergillus niger and the plant pathogen Magnaporthe oryzae showed different phenotypes for deletion strains of XlnR. In this study wild type and xlnR/xlr1/xyr1 mutants of five fungi were compared: Fusarium graminearum, M. oryzae, Trichoderma reesei, A. niger and Aspergillus nidulans. Growth profiling on relevant substrates and a detailed analysis of the secretome as well as extracellular enzyme activities demonstrated a common role of this regulator in activating genes encoding the main xylanolytic enzymes. However, large differences were found in the set of genes that is controlled by XlnR in the different species, resulting in the production of different extracellular enzyme spectra by these fungi. This comparison emphasizes the functional diversity of a fine-tuned (hemi-)cellulolytic regulatory system in filamentous fungi, which might be related to the adaptation of fungi to their specific biotopes. Data are available via ProteomeXchange with identifier PXD001190.
Biotechnology for Biofuels | 2014
Thiago M. Mello-de-Sousa; Rita Gorsche; Alice Rassinger; Marcio José Poças-Fonseca; Robert L. Mach; Astrid R. Mach-Aigner
BackgroundRut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-type QM6a in many ways, of which two are the lack of a 83 kb large sequence in scaffold 15 and the partial lack of the gene encoding the Carbon catabolite repressor 1 (CREI). However, it is still unclear, what exactly enhances cellulase production in Rut-C30.ResultsThe investigation of the expression of two genes encoding cellulases (cbh1 and cbh2) and the gene encoding their main transactivator (xyr1) revealed that the presence of the truncated form of CREI (CREI-96) contributes more to the Rut-C30 phenotype than a general loss of CREI-mediated carbon catabolite repression (cre1 deletion strain) or the deletion of 29 genes encoded in the scaffold 15 (83 kb deletion strain). We found that the remaining cre1 in Rut-C30 (cre1-96) is transcribed into mRNA, that its putative gene product (Cre1-96) is still able to bind DNA, and that the CREI-binding sites in the upstream regulatory regions of the chosen CREI-target genes are still protected in Rut-C30. As it was previously reported that CREI acts on the nucleosome positioning, we also analyzed chromatin accessibility of the core promoters of CREI-target genes and found them open even on D-glucose in the presence of CREI-96.ConclusionsThe lack of the full version of CREI in Rut-C30 corresponds with a partial release from carbon catabolite repression but is not completely explained by the lack of CREI. In contrast, the truncated CREI-96 of Rut-C30 exerts a positive regulatory influence on the expression of target genes. Mechanistically this might be explained at least partially by a CREI-96-mediated opening of chromatin.
Applied and Environmental Microbiology | 2011
Astrid R. Mach-Aigner; Loreta Gudynaite-Savitch; Robert L. Mach
ABSTRACT The saprophytic fungus Hypocrea jecorina (anamorph, Trichoderma reesei) is an important native producer of hydrolytic enzymes, including xylanases. Regarding principles of sustainability, cheap and renewable raw materials, such as d-xylose (the backbone monomer of xylan), have been receiving increasing attention from industries. Recently, it was demonstrated that small (0.5 to 1 mM) amounts of d-xylose induce the highest expression of xylanase in H. jecorina. However, it was also reported that active metabolism of d-xylose is necessary for induction. In this report, we demonstrate that xylitol, the next intermediate in the pentose pathway after d-xylose, does not trigger transcription of xylanase-encoding genes in H. jecorina QM9414. The highest level of transcription of xylanolytic enzyme-encoding genes occurred in an xdh1 (encoding a xylitol dehydrogenase) deletion strain cultured in the presence of 0.5 mM d-xylose, suggesting that a metabolite upstream of xylitol is the inducer. The expression levels of xylanases in an xdh1-lad1 double-deletion strain were lower than that of an xdh1 deletion strain. This observation suggested that l-xylulose is not an inducer and led to the hypothesis that l-arabitol is the actual inducer of xylanase expression. A direct comparison of transcript levels following the incubation of the H. jecorina parental strain with various metabolites of the pentose pathway confirmed this hypothesis. In addition, we demonstrate that xyr1, the activator gene, is not induced in the presence of pentose sugars and polyols, regardless of the concentration used; instead, we observed low constitutive expression of xyr1.
BMC Genomics | 2015
Thiago M. Mello-de-Sousa; Alice Rassinger; Marion E. Pucher; Lílian dos Santos Castro; Gabriela F. Persinoti; Rafael Silva-Rocha; Marcio José Poças-Fonseca; Robert L. Mach; Roberto Nascimento Silva; Astrid R. Mach-Aigner
BackgroundTrichoderma reesei is used for industry-scale production of plant cell wall-degrading enzymes, in particular cellulases, but also xylanases. The expression of the encoding genes was so far primarily investigated on the level of transcriptional regulation by regulatory proteins. Otherwise, the impact of chromatin remodelling on gene expression received hardly any attention. In this study we aimed to learn if the chromatin status changes in context to the applied conditions (repressing/inducing), and if the presence or absence of the essential transactivator, the Xylanase regulator 1 (Xyr1), influences the chromatin packaging.ResultsComparing the results of chromatin accessibility real-time PCR analyses and gene expression studies of the two prominent cellulase-encoding genes, cbh1 and cbh2, we found that the chromatin opens during sophorose-mediated induction compared to D-glucose-conferred repression. In the strain bearing a xyr1 deletion the sophorose mediated induction of gene expression is lost and the chromatin opening is strongly reduced. In all conditions the chromatin got denser when Xyr1 is absent. In the case of the xylanase-encoding genes, xyn1 and xyn2, the result was similar concerning the condition-specific response of the chromatin compaction. However, the difference in chromatin status provoked by the absence of Xyr1 is less pronounced. A more detailed investigation of the DNA accessibility in the cbh1 promoter showed that the deletion of xyr1 changed the in vivo footprinting pattern. In particular, we detected increased hypersensitivity on Xyr1-sites and stronger protection of Cre1-sites. Looking for the players directly causing the observed chromatin remodelling, a whole transcriptome shotgun sequencing revealed that 15 genes encoding putative chromatin remodelers are differentially expressed in response to the applied condition and two amongst them are differentially expressed in the absence of Xyr1.ConclusionsThe regulation of xylanase and cellulase expression in T. reesei is not only restricted to the action of transcription factors but is clearly related to changes in the chromatin packaging. Both the applied condition and the presence of Xyr1 influence chromatin status.
Applied and Environmental Microbiology | 2016
Christian Derntl; Alice Rassinger; Ewald Srebotnik; Robert L. Mach; Astrid R. Mach-Aigner
ABSTRACT The industrially used ascomycete Trichoderma reesei secretes a typical yellow pigment during cultivation, while other Trichoderma species do not. A comparative genomic analysis suggested that a putative secondary metabolism cluster, containing two polyketide-synthase encoding genes, is responsible for the yellow pigment synthesis. This cluster is conserved in a set of rather distantly related fungi, including Acremonium chrysogenum and Penicillium chrysogenum. In an attempt to silence the cluster in T. reesei, two genes of the cluster encoding transcription factors were individually deleted. For a complete genetic proof-of-function, the genes were reinserted into the genomes of the respective deletion strains. The deletion of the first transcription factor (termed yellow pigment regulator 1 [Ypr1]) resulted in the full abolishment of the yellow pigment formation and the expression of most genes of this cluster. A comparative high-pressure liquid chromatography (HPLC) analysis of supernatants of the ypr1 deletion and its parent strain suggested the presence of several yellow compounds in T. reesei that are all derived from the same cluster. A subsequent gas chromatography/mass spectrometry analysis strongly indicated the presence of sorbicillin in the major HPLC peak. The presence of the second transcription factor, termed yellow pigment regulator 2 (Ypr2), reduces the yellow pigment formation and the expression of most cluster genes, including the gene encoding the activator Ypr1. IMPORTANCE Trichoderma reesei is used for industry-scale production of carbohydrate-active enzymes. During growth, it secretes a typical yellow pigment. This is not favorable for industrial enzyme production because it makes the downstream process more complicated and thus increases operating costs. In this study, we demonstrate which regulators influence the synthesis of the yellow pigment. Based on these data, we also provide indication as to which genes are under the control of these regulators and are finally responsible for the biosynthesis of the yellow pigment. These genes are organized in a cluster that is also found in other industrially relevant fungi, such as the two antibiotic producers Penicillium chrysogenum and Acremonium chrysogenum. The targeted manipulation of a secondary metabolism cluster is an important option for any biotechnologically applied microorganism.