Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atchara Paemanee is active.

Publication


Featured researches published by Atchara Paemanee.


Journal of Medical Virology | 2012

Identification of prohibitin as a Chikungunya virus receptor protein

Phitchayapak Wintachai; Nitwara Wikan; Atichat Kuadkitkan; Thitigun Jaimipuk; Sukathida Ubol; Rojjanaporn Pulmanausahakul; Prasert Auewarakul; Watchara Kasinrerk; Wen-Yu Weng; Mingkwan Panyasrivanit; Atchara Paemanee; Suthathip Kittisenachai; Sittiruk Roytrakul; Duncan R. Smith

Chikungunya virus (CHIKV) has recently re‐emerged causing millions of infections in countries around the Indian Ocean. While CHIKV has a broad host cell range and productively infects a number of different cell types, macrophages have been identified as a potential viral reservoir serving to increase the duration of symptoms. To date no CHIKV interacting protein has been characterized and this study sought to identify CHIKV binding proteins expressed on target cell membranes. Two‐dimensional virus overlay identified prohibitin (PHB) as a microglial cell expressed CHIKV binding protein. Co‐localization, co‐immunoprecipitation as well as antibody and siRNA mediated infection inhibition studies all confirmed a role for PHB in mediating internalization of CHIKV into microglial cells. PHB is the first identified CHIKV receptor protein, and this study is evidence that PHB may play a role in the internalization of multiple viruses. J. Med. Virol. 84:1757–1770, 2012.


PLOS ONE | 2012

Proteomic Analysis of Chikungunya Virus Infected Microgial Cells

Bizunesh Abere; Nitwara Wikan; Sukathida Ubol; Prasert Auewarakul; Atchara Paemanee; Suthathip Kittisenachai; Sittiruk Roytrakul; Duncan R. Smith

Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms.


Journal of Human Genetics | 2003

Anion exchanger 1 mutations associated with distal renal tubular acidosis in the Thai population

Pa-thai Yenchitsomanus; Nunghathai Sawasdee; Atchara Paemanee; Thitima Keskanokwong; Somkiat Vasuvattakul; Sasitorn Bejrachandra; Warunee Kunachiwa; Supan Fucharoen; Prapaporn Jittphakdee; Wanwimon Yindee; Charupon Promwong

AbstractWe have previously demonstrated that compound heterozygous (SAO/G701D) and homozygous (G701D/G701D) mutations of the anion exchanger 1 (AE1) gene, encoding erythroid and kidney AE1 proteins, cause autosomal recessive distal renal tubular acidosis (AR dRTA) in Thai patients. It is thus of interest to examine the prevalence of these mutations in the Thai population. The SAO and G701D mutations were examined in 844 individuals from north, northeast, central, and south Thailand. Other reported mutations including R602H, ΔV850, and A858D were also examined in some groups of subjects. The SAO mutation was common in the southern Thai population; its heterozygote frequency was 7/206 and estimated allele frequency 1.70%. However, this mutation was not observed in populations of three other regions of Thailand. In contrast, the G701D mutation was not found in the southern population but was observed in the northern, northeastern, and central populations, with heterozygote frequencies of 1/216, 3/205, and 1/217, and estimated allele frequencies of 0.23%, 0.73%, and 0.23%, respectively. The higher allele frequency of the G701D mutation in the northeastern Thai population corresponds to our previous finding that all Thai patients with AR dRTA attributable to homozygous G701D mutation originate from this population. This suggests that the G701D allele that is observed in this region might arise in northeastern Thailand. The presence of patients with compound heterozygous SAO/G701D in southern Thailand and Malaysia and their apparently absence in northeastern Thailand indicate that the G701D allele may have migrated to the southern peninsular region where SAO is common, resulting in pathogenic allelic interaction.


Journal of Translational Medicine | 2014

Comprehensive proteomic analysis of white blood cells from chikungunya fever patients of different severities

Nitwara Wikan; Sarawut Khongwichit; Weerawat Phuklia; Sukathida Ubol; Tipparat Thonsakulprasert; Montri Thannagith; Duangrudee Tanramluk; Atchara Paemanee; Suthathip Kittisenachai; Sittiruk Roytrakul; Duncan R. Smith

BackgroundChikungunya fever (CHIKF) is a recently re-emerged mosquito transmitted viral disease caused by the chikungunya virus (CHIKV), an Alphavirus belonging to the family Togaviridae. Infection of humans with CHIKV can result in CHIKF of variable severity, although the factors mediating disease severity remain poorly defined.MethodsWhite blood cells were isolated from blood samples collected during the 2009-2010 CHIKF outbreak in Thailand. Clinical presentation and viral load data were used to classify samples into three groups, namely non chikungunya fever (non-CHIKF), mild CHIKF, and severe CHIKF. Five samples from each group were analyzed for protein expression by GeLC-MS/MS.ResultsCHIKV proteins (structural and non-structural) were found only in CHIKF samples. A total of 3505 human proteins were identified, with 68 proteins only present in non-CHIKF samples. A total of 240 proteins were found only in CHIKF samples, of which 65 and 46 were found only in mild and severe CHIKF samples respectively. Proteins with altered expression mapped predominantly to cellular signaling pathways (including toll-like receptor and PI3K-Akt signaling) although many other processes showed altered expression as a result of CHIKV infection. Expression of proteins consistent with the activation of the inflammasome was detected, and quantitation of (pro)-caspase 1 at the protein and RNA levels showed an association with disease severity.ConclusionsThis study confirms the infection of at least a component of white blood cells by CHIKV, and shows that CHIKV infection results in activation of the inflammasome in a manner that is associated with disease severity.


Urological Research | 2009

Evidence suggesting a genetic contribution to kidney stone in northeastern Thai population

Suchai Sritippayawan; Sombat Borvornpadungkitti; Atchara Paemanee; Chagkrapan Predanon; Wattanachai Susaengrat; Duangporn Chuawattana; Nunghathai Sawasdee; Sirintra Nakjang; Suttikarn Pongtepaditep; Choochai Nettuwakul; Nanyawan Rungroj; Somkiat Vasuvattakul; Prida Malasit; Pa-thai Yenchitsomanus

Genetic factor may play a role in the pathogenesis of kidney stone that is found in the northeastern (NE) Thai population. Herein, we report initial evidence suggesting genetic contribution to the disease in this population. We examined 1,034 subjects including 135 patients with kidney stone, 551 family members, and 348 villagers by radiography of kidney–ureter–bladder (KUB) and other methods, and also analyzed stones removed by surgical operations. One hundred and sixteen of 551 family members (21.05%) and 23 of the 348 villagers (6.61%) were affected with kidney stone. The relative risk (λR) of the disease among family members was 3.18. Calcium stones (whewellite, dahllite, and weddellite) were observed in about 88% of stones analyzed. Our data indicate familial aggregation of kidney stone in this population supporting that genetic factor should play some role in its pathogenesis. Genetic and genomic studies will be conducted to identify the genes associated with the disease.


Urology | 2011

Prothrombin Haplotype Associated With Kidney Stone Disease in Northeastern Thai Patients

Nanyawan Rungroj; Suchai Sritippayawan; Wanna Thongnoppakhun; Atchara Paemanee; Nunghathai Sawasdee; Choochai Nettuwakul; Nirinya Sudtachat; Duangporn Ungsupravate; Pairao Praihirunkit; Duangporn Chuawattana; Varaporn Akkarapatumwong; Sombat Borvornpadungkitti; Wattanachai Susaengrat; Somkiat Vasuvattakul; Prida Malasit; Pa-thai Yenchitsomanus

OBJECTIVE To evaluate genetic variations associated with kidney stone disease in Northeastern Thai patients. METHODS Altogether, 67 single nucleotide polymorphisms (SNP) distributed within 8 candidate genes, namely TFF1, S100A8, S100A9, S100A12, AMBP, SPP1, UMOD, and F2, which encode stone inhibitor proteins, including trefoil factor 1, calgranulin (A, B, and C), bikunin, osteopontin, tamm-Horsfall protein, and prothrombin, respectively, were initially genotyped in 112 individuals each and in additional subjects to consist of 164 patients and 216 control subjects in total. RESULTS We found that minor allele and homozygous genotype frequencies of 8 of 10 SNPs distributed within the F2 gene were significantly higher in the control group than in the patient group. Two F2 haplotypes were found to be dually associated with kidney stone risk, one (TGCCGCCGCG) with increased disease risk and the other (CGTTCCGCTA) with decreased disease risk. However, these 2 haplotypes were associated with the disease risks in only the female, not the male, group. CONCLUSIONS The results of our study indicate that genetic variation of F2 is associated with kidney stone risk in Northeastern Thai female patients.


Disease Markers | 2015

Novel Serum Biomarkers to Differentiate Cholangiocarcinoma from Benign Biliary Tract Diseases Using a Proteomic Approach.

Tavan Janvilisri; Kawin Leelawat; Sittiruk Roytrakul; Atchara Paemanee; Rutaiwan Tohtong

Background and Aim. Cholangiocarcinoma (CCA) is the most frequent biliary malignancy, which poses high mortality rate due to lack of early detection. Hence, most CCA cases are present at the advanced to late stages with local or distant metastasis at the time of diagnosis. Currently available tumor markers including CA19-9 and CEA are inefficient and of limited usage due to low sensitivity and specificity. Here, we attempt to identify serum tumor markers for CCA that can effectively distinguish CCA from benign biliary tract diseases (BBTDs). Methods. Serum samples from 19 CCA patients and 17 BBTDs were separated by SDS-PAGE followed with LC-MS/MS and were subjected to statistical analysis and cross-validation to identify proteins whose abundance was significantly elevated or suppressed in CCA samples compared to BBTDs. Results. In addition to identifying several proteins previously known to be differentially expressed in CCA and BBTDs, we also discovered a number of molecules that were previously not associated with CCA. These included FAM19A5, MAGED4B, KIAA0321, RBAK, and UPF3B. Conclusions. Novel serum biomarkers to distinguish CCA from BBTDs were identified using a proteomic approach. Further validation of these proteins has the potential to provide a biomarker for differentiating CCA from BBTDs.


Food Chemistry | 2012

Characterisation of thermostable trypsin and determination of trypsin isozymes from intestine of Nile tilapia (Oreochromis niloticus L.)

Sasimanas Unajak; Piyachat Meesawat; Atchara Paemanee; Nontawith Areechon; Arunee Engkagul; Uthaiwan Kovitvadhi; Satit Kovitvadhi; Krisna Rungruangsak-Torrissen; Kiattawee Choowongkomon

Trypsin from intestinal extracts of Nile tilapia (Oreochromis niloticus L.) was characterised. Three-step purification - by ammonium sulphate precipitation, Sephadex G-100, and Q Sepharose - was applied to isolate trypsin, and resulted in 3.77% recovery with a 5.34-fold increase in specific activity. At least 6 isoforms of trypsin were found in different ages. Only one major trypsin isozyme was isolated with high purity, as assessed by SDS-PAGE and native-PAGE zymogram, appearing as a single band of approximately 22.39 kDa protein. The purified trypsin was stable, with activity over a wide pH range of 6.0-11.0 and an optimal temperature of approximately 55-60 °C. The relative activity of the purified enzyme was dramatically increased in the presence of commercially used detergents, alkylbenzene sulphonate or alcohol ethoxylate, at 1% (v/v). The observed Michaelis-Menten constant (Km) and catalytic constant (Kcat) of the purified trypsin for BAPNA were 0.16 mM and 23.8 s(-1), respectively. The catalytic efficiency (Kcat/Km) was 238 s(-1) mM(-1).


PLOS ONE | 2015

Comparative Proteomics of Activated THP-1 Cells Infected with Mycobacterium tuberculosis Identifies Putative Clearance Biomarkers for Tuberculosis Treatment.

Benjawan Kaewseekhao; Vivek Naranbhai; Sittiruk Roytrakul; Wises Namwat; Atchara Paemanee; Viraphong Lulitanond; Angkana Chaiprasert; Kiatichai Faksri

Biomarkers for determining clearance of Mycobacterium tuberculosis (Mtb) infection during anti-tuberculosis therapy or following exposure could facilitate enhanced monitoring and treatment. We screened for biomarkers indicating clearance of Mtb infection in vitro. A comparative proteomic analysis was performed using GeLC MSI/MS. Intracellular and secreted proteomes from activated THP-1 cells infected with the Mtb H37Rv strain (MOI = 1) and treated with isoniazid and rifampicin for 1 day (infection stage) and 5 days (clearance stage) were analyzed. Host proteins associated with early infection (n = 82), clearance (n = 121), sustained in both conditions (n = 34) and suppressed by infection (n = 46) were elucidated. Of the potential clearance markers, SSFA2 and CAECAM18 showed the highest and lowest protein intensities, respectively. A western blot of CAECAM18 validated the LC MS/MS result. For three clearance markers (SSFA2, PARP14 and PSME4), in vivo clinical validation was concordantly reported in previous patient cohorts. A network analysis revealed that clearance markers were enriched amongst four protein interaction networks centered on: (i) CD44/CCND1, (ii) IFN-β1/NF-κB, (iii) TP53/TGF-β and (iv) IFN-γ/CCL2. After infection, proteins associated with proliferation, and recruitment of immune cells appeared to be enriched possibly reflecting recruitment of defense mechanisms. Counteracting proteins (CASP3 vs. Akt and NF-κB vs. TP53) associated with apoptosis regulation and its networks were enriched among the early and sustained infection biomarkers, indicating host-pathogen competition. The BRCA1/2 network was suppressed during infection, suggesting that cell proliferation suppression is a feature of Mtb survival. Our study provides insights into the mechanisms of host-Mtb interaction by comparing the stages of infection clearance. The identified clearance biomarkers may be useful in monitoring tuberculosis treatment.


Methods of Molecular Biology | 2016

Application of GelC-MS/MS to Proteomic Profiling of Chikungunya Virus Infection: Preparation of Peptides for Analysis.

Atchara Paemanee; Nitwara Wikan; Sittiruk Roytrakul; Duncan R. Smith

Gel-enhanced liquid chromatography coupled with tandem mass spectrometry (GeLC-MS/MS) is a labor intensive, but relatively straightforward methodology that generates high proteome coverage which can be applied to the proteome analysis of a range of starting materials such as cells or patient specimens. Sample proteins are resolved electrophoretically in one dimension through a sodium dodecyl sulfate (SDS) polyacrylamide gel after which the lanes are sliced into sections. The sections are further diced and the gel cubes generated are subjected to in-gel tryptic digestion. The resultant peptides can then be analyzed by tandem mass spectroscopy to identify the proteins by database searching. The methodology can routinely detect several thousand proteins in one analysis. The protocol we describe here has been used with both cells in culture that have been infected with chikungunya virus and specimens from Chikungunya fever patients. This protocol details the process for generating peptides for subsequent mass spectroscopic and bioinformatic analysis.

Collaboration


Dive into the Atchara Paemanee's collaboration.

Top Co-Authors

Avatar

Sittiruk Roytrakul

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suthathip Kittisenachai

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge