Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pa-thai Yenchitsomanus is active.

Publication


Featured researches published by Pa-thai Yenchitsomanus.


Nature Medicine | 2003

Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever

Juthathip Mongkolsapaya; Wanwisa Dejnirattisai; Xiao-Ning Xu; Sirijitt Vasanawathana; Nattaya Tangthawornchaikul; Aroonrung Chairunsri; Siraporn Sawasdivorn; Thaneeya Duangchinda; Tao Dong; Sarah Rowland-Jones; Pa-thai Yenchitsomanus; Andrew J. McMichael; Prida Malasit; Gavin R. Screaton

Dengue virus presents a growing threat to public health in the developing world. Four major serotypes of dengue virus have been characterized, and epidemiological evidence shows that dengue hemorrhagic fever (DHF), the more serious manifestation of the disease, occurs more frequently upon reinfection with a second serotype. We have studied dengue virus–specific T-cell responses in Thai children. During acute infection, few dengue-responsive CD8+ T cells were recovered; most of those present showed an activated phenotype and were undergoing programmed cell death. Many dengue-specific T cells were of low affinity for the infecting virus and showed higher affinity for other, probably previously encountered strains. Profound T-cell activation and death may contribute to the systemic disturbances leading to DHF, and original antigenic sin in the T-cell responses may suppress or delay viral elimination, leading to higher viral loads and increased immunopathology.


The Journal of Infectious Diseases | 2006

Vascular Leakage in Severe Dengue Virus Infections: A Potential Role for the Nonstructural Viral Protein NS1 and Complement

Panisadee Avirutnan; Nuntaya Punyadee; Sansanee Noisakran; Chulaluk Komoltri; Somchai Thiemmeca; Kusuma Auethavornanan; Aroonroong Jairungsri; Rattiyaporn Kanlaya; Nattaya Tangthawornchaikul; Chunya Puttikhunt; Sa-nga Pattanakitsakul; Pa-thai Yenchitsomanus; Juthathip Mongkolsapaya; Watchara Kasinrerk; Nopporn Sittisombut; Matthias Husmann; Maria Blettner; Sirijitt Vasanawathana; Sucharit Bhakdi; Prida Malasit

BACKGROUND Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Thirty years ago, complement activation was proposed to be a key underlying event, but the cause of complement activation has remained unknown. METHODS The major nonstructural dengue virus (DV) protein NS1 was tested for its capacity to activate human complement in its membrane-associated and soluble forms. Plasma samples from 163 patients with DV infection and from 19 patients with other febrile illnesses were prospectively analyzed for viral load and for levels of NS1 and complement-activation products. Blood and pleural fluids from 9 patients with DSS were also analyzed. RESULTS Soluble NS1 activated complement to completion, and activation was enhanced by polyclonal and monoclonal antibodies against NS1. Complement was also activated by cell-associated NS1 in the presence of specific antibodies. Plasma levels of NS1 and terminal SC5b-9 complexes correlated with disease severity. Large amounts of NS1, complement anaphylatoxin C5a, and the terminal complement complex SC5b-9 were present in pleural fluids from patients with DSS. CONCLUSIONS Complement activation mediated by NS1 leads to local and systemic generation of anaphylatoxins and SC5b-9, which may contribute to the pathogenesis of the vascular leakage that occurs in patients with DHF/DSS.


Nature Genetics | 2005

A variant in the CD209 promoter is associated with severity of dengue disease

Anavaj Sakuntabhai; Chairat Turbpaiboon; Isabelle Casademont; Ampaiwan Chuansumrit; Tassanee Lowhnoo; Anna Kajaste-Rudnitski; Sita Mint Kalayanarooj; Kanchana Tangnararatchakit; Nattaya Tangthawornchaikul; Sirijit Vasanawathana; Wathanee Chaiyaratana; Pa-thai Yenchitsomanus; Prapat Suriyaphol; Panisadee Avirutnan; Kulkanya Chokephaibulkit; Fumihiko Matsuda; Sutee Yoksan; Yves Jacob; G. Mark Lathrop; Prida Malasit; Philippe Desprès; Cécile Julier

Dengue fever and dengue hemorrhagic fever are mosquito-borne viral diseases. Dendritic cell–specific ICAM-3 grabbing nonintegrin (DC-SIGN1, encoded by CD209), an attachment receptor of dengue virus, is essential for productive infection of dendritic cells. Here, we report strong association between a promoter variant of CD209, DCSIGN1-336, and risk of dengue fever compared with dengue hemorrhagic fever or population controls. The G allele of the variant DCSIGN1-336 was associated with strong protection against dengue fever in three independent cohorts from Thailand, with a carrier frequency of 4.7% in individuals with dengue fever compared with 22.4% in individuals with dengue hemorrhagic fever (odds ratio for risk of dengue hemorrhagic fever versus dengue fever: 5.84, P = 1.4 × 10−7) and 19.5% in controls (odds ratio for protection: 4.90, P = 2 × 10−6). This variant affects an Sp1-like binding site and transcriptional activity in vitro. These results indicate that CD209 has a crucial role in dengue pathogenesis, which discriminates between severe dengue fever and dengue hemorrhagic fever. This may have consequences for therapeutic and preventive strategies.


Traffic | 2006

Dominant and Recessive Distal Renal Tubular Acidosis Mutations of Kidney Anion Exchanger 1 Induce Distinct Trafficking Defects in MDCK Cells

Emmanuelle Cordat; Saranya Kittanakom; Pa-thai Yenchitsomanus; Jing Li; Kai Du; Gergely L. Lukacs; Reinhart A. F. Reithmeier

Distal renal tubular acidosis (dRTA), a kidney disease resulting in defective urinary acidification, can be caused by dominant or recessive mutations in the kidney Cl–/HCO3– anion exchanger (kAE1), a glycoprotein expressed in the basolateral membrane of α‐intercalated cells. We compared the effect of two dominant (R589H and S613F) and two recessive (S773P and G701D) dRTA point mutations on kAE1 trafficking in Madin‐Darby canine kidney (MDCK) epithelial cells. In contrast to wild‐type (WT) kAE1 that was localized to the basolateral membrane, the dominant mutants (kAE1 R589H and S613F) were retained in the endoplasmic reticulum (ER) in MDCK cells, with a few cells showing in addition some apical localization. The recessive mutant kAE1 S773P, while misfolded and largely retained in the ER in non‐polarized MDCK cells, was targeted to the basolateral membrane after polarization. The other recessive mutants, kAE1 G701D and designed G701E, G701R but not G701A or G701L mutants, were localized to the Golgi in both non‐polarized and polarized cells. The results suggest that introduction of a polar mutation into a transmembrane segment resulted in Golgi retention of the recessive G701D mutant. When coexpressed, the dominant mutants retained kAE1 WT intracellularly, while the recessive mutants did not. Coexpression of recessive G701D and S773P mutants in polarized cells showed that these proteins could interact, yet no G701D mutant was detected at the basolateral membrane. Therefore, compound heterozygous patients expressing both recessive mutants (G701D/S773P) likely developed dRTA due to the lack of a functional kAE1 at the basolateral surface of α‐intercalated cells.


Biochemical and Biophysical Research Communications | 2009

Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production.

Thawornchai Limjindaporn; Wiyada Wongwiwat; Sansanee Noisakran; Chatchawan Srisawat; Janjuree Netsawang; Chunya Puttikhunt; Watchara Kasinrerk; Panisadee Avirutnan; Somchai Thiemmeca; Rungtawan Sriburi; Nopporn Sittisombut; Prida Malasit; Pa-thai Yenchitsomanus

Dengue virus infection is an important mosquito-borne disease and a public health problem worldwide. A better understanding of interactions between human cellular host and dengue virus proteins will provide insight into dengue virus replication and cellular pathogenesis. The glycosylated envelope protein of dengue virus, DENV E, is processed in the endoplasmic reticulum of host cells and therefore reliant on host processing functions. The complement of host ER functions involved and nature of the interactions with DENV E has not been thoroughly investigated. By employing a yeast two-hybrid assay, we found that domain III of DENV E interacts with human immunoglobulin heavy chain binding protein (BiP). The relevance of this interaction was demonstrated by co-immunoprecipitation and co-localization of BiP and DENV E in dengue virus-infected cells. Using the same approach, association of DENV E with two other chaperones, calnexin and calreticulin was also observed. Knocking-down expression of BiP, calnexin, or calreticulin by siRNA significantly decreased the production of infectious dengue virions. These results indicate that the interaction of these three chaperones with DENV E plays an important role in virion production, likely facilitating proper folding and assembly of dengue proteins.


Clinical Genetics | 2004

High prevalence of V37I genetic variant in the connexin-26 (GJB2) gene among non-syndromic hearing-impaired and control Thai individuals

Duangrurdee Wattanasirichaigoon; C. Limwongse; C. Jariengprasert; Pa-thai Yenchitsomanus; C. Tocharoenthanaphol; W. Thongnoppakhun; C. Thawil; Dussadee Charoenpipop; T. Pho-iam; S. Thongpradit; P. Duggal

Hearing loss is highly prevalent with a worldwide incidence of 1–2 per 1000 newborns. Several previous studies have demonstrated that mutations of connexin 26 (Cx26 or GJB2) are responsible for most cases of the recessive non‐syndromic sensorineural hearing loss (NSSHL). Certain mutations have been described frequently among various populations, which include 35delG, 167delT, and 235delC. Recently, a missense mutation, V37I, was reported as a pathogenic change in East Asian affected individuals. To identify genetic variants associated with NSSHL in Thai population, we performed mutation analysis of Cx26 in 166 unrelated probands with NSSHL and 205 controls. We identified seven novel genetic variants in Cx26. We also identified a high prevalence of the V37I mutation among both affected probands (11.1%) and control subjects (8.5%), which suggests that the pathologic role of V37I may be modified by other genes. Our data support previous studies that show heterogeneity in the frequencies and types of mutations in Cx26 within populations and among ethnicities and that before clinical significance and causality can be attributed to a genetic variant, functional characterization is necessary.


Virus Research | 2010

Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis

Janjuree Netsawang; Sansanee Noisakran; Chunya Puttikhunt; Watchara Kasinrerk; Wiyada Wongwiwat; Prida Malasit; Pa-thai Yenchitsomanus; Thawornchai Limjindaporn

Dengue virus capsid protein (DENVC) localizes to both the cytoplasm and nucleus of dengue virus-infected cells. DENV C contains three nuclear localization signals (NLS), (6)KKAR(9), (73)KKSK(76), and the bipartite signal (85)RKeigrmlnilnRRRR(100). Stable HepG2 cells constitutively expressing DENV C, DENV C (Delta 85-100) and DENV C (Delta 73-100) were constructed to clarify whether nuclear translocation of DENV C affected apoptosis in liver cell line. While the wild-type DENV C could translocate into the nuclei of HepG2 cells, the mutant DENV Cs were restricted to the cytoplasm. The loss of nuclear localization of both mutant DENV Cs resulted in the disruption of their interactions with the apoptotic protein Daxx. Interestingly, upon treatment with anti-Fas antibody, the HepG2 cells expressing the wild-type DENV C showed significantly more apoptosis compared with the HepG2 cells expressing either mutant DENV C. To identify the amino acids required for DAXX interaction and apoptosis, substitution mutations either (K73A/K74A) or (R85A/K86A) were introduced into the C-terminal region of DENV C, and tested whether these mutations affected its interaction with Daxx and apoptosis. The results demonstrate that (73)KK and (85)RK of DENV C are important for its nuclear localization, interaction with DAXX and induction of apoptosis. This work is the first to demonstrate that nuclear localization of DENV C is required for DAXX interaction and apoptosis.


Biochemical and Biophysical Research Communications | 2008

Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

Sansanee Noisakran; Suchada Sengsai; Visith Thongboonkerd; Rattiyaporn Kanlaya; Supachok Sinchaikul; Shui-Tein Chen; Chunya Puttikhunt; Watchara Kasinrerk; Thawornchai Limjindaporn; Wiyada Wongwiwat; Prida Malasit; Pa-thai Yenchitsomanus

Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.


Journal of Virological Methods | 2002

Comparison of four reverse transcription-polymerase chain reaction procedures for the detection of dengue virus in clinical specimens.

Boonyos Raengsakulrach; Ananda Nisalak; Niwat Maneekarn; Pa-thai Yenchitsomanus; Chandhana Limsomwong; Aroonroong Jairungsri; Vipa Thirawuth; Sharone Green; Siripen Kalayanarooj; Saroj Suntayakorn; Nopporn Sittisombut; Prida Malasit; David W. Vaughn

The sensitivity of dengue virus identification by mosquito inoculation and four reverse transcription-polymerase chain reaction (RT-PCR) procedures (Am. J. Trop. Med. Hyg. 45 (1991) 418 (H); J. Clin. Microbiol. 29 (1991) 2107 (M); J. Clin. Microbiol. 30 (1992) 545 (L); and Southeast Asian J. Trop. Med. Public Health 27 (1996) 228 (Y)) were compared using coded clinical specimens derived from areas in Thailand where all four dengue serotypes circulate. The sensitivity of virus detection in serologically confirmed dengue cases was 54, 52, 60, 79, and 80% for mosquito inoculation, procedures H, M, L and Y, respectively. In comparison to clinical specimens which yielded virus isolates by mosquito inoculation, there was relatively low sensitivity in detecting each of the four dengue serotypes by PCR: procedure H-dengue 4 (25%), procedure M-dengue 3 (73%), procedure L-dengue 1 (70%), and procedure Y-dengue 1 (79%). Dengue virus was detectable by RT-PCR for more days of illness and in the presence of dengue-specific antibody when compared to virus isolated in mosquitoes. Procedures L and Y were more sensitive than mosquito inoculation or procedures H and M in detecting all four dengue serotypes in clinical specimens and may be the RT-PCR methods of choice for virus surveillance or research use.


Biochemical Journal | 2010

Band 3 Edmonton I, a novel mutant of the anion exchanger 1 causing spherocytosis and distal renal tubular acidosis

Carmen Y. S. Chu; Naomi Woods; Nunghathai Sawasdee; Hélène Guizouarn; Bernard Pellissier; Franck Borgese; Pa-thai Yenchitsomanus; Manjula Gowrishankar; Emmanuelle Cordat

dRTA (distal renal tubular acidosis) and HS (hereditary spherocytosis) are two diseases that can be caused by mutations in the gene encoding the AE1 (anion exchanger 1; Band 3). dRTA is characterized by defective urinary acidification, leading to metabolic acidosis, renal stones and failure to thrive. HS results in anaemia, which may require regular blood transfusions and splenectomy. Mutations in the gene encoding AE1 rarely cause both HS and dRTA. In the present paper, we describe a novel AE1 mutation, Band 3 Edmonton I, which causes dominant HS and recessive dRTA. The patient is a compound heterozygote with the new mutation C479W and the previously described mutation G701D. Red blood cells from the patient presented a reduced amount of AE1. Expression in a kidney cell line showed that kAE1 (kidney AE1) C479W is retained intracellularly. As kAE1 is a dimer, we performed co-expression studies and found that, in kidney cells, kAE1 C479W and G701D proteins traffic independently from each other despite their ability to form heterodimers. Therefore the patient carries one kAE1 mutant that is retained in the Golgi (G701D) and another kAE1 mutant (C479W) located in the endoplasmic reticulum of kidney cells, and is thus probably unable to reabsorb bicarbonate into the blood. We conclude that the C479W mutant is a novel trafficking mutant of AE1, which causes HS due to a decreased cell-surface AE1 protein and results in dRTA due to its intracellular retention in kidney.

Collaboration


Dive into the Pa-thai Yenchitsomanus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sansanee Noisakran

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunya Puttikhunt

Thailand National Science and Technology Development Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge