Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Athar Ansari is active.

Publication


Featured researches published by Athar Ansari.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Role for gene looping in intron-mediated enhancement of transcription

Aboudi M. Moabbi; Neha Agarwal; Belal El Kaderi; Athar Ansari

Intron-containing genes are often transcribed more efficiently than nonintronic genes. The effect of introns on transcription of genes is an evolutionarily conserved feature, being exhibited by such diverse organisms as yeast, plants, flies, and mammals. The mechanism of intron-mediated transcriptional activation, however, is not entirely clear. To address this issue, we inserted an intron in INO1, which is a nonintronic gene, and deleted the intron from ASC1, which contains a natural intron. We then compared transcription of INO1 and ASC1 genes in the presence and absence of an intron. Transcription of both genes was significantly stimulated by the intron. The introns have a direct role in enhancing transcription of INO1 and ASC1 because there was a marked increase in nascent transcripts from these genes in the presence of an intron. Intron-mediated enhancement of transcription required a splicing competent intron. Interestingly, both INO1 and ASC1 were in a looped configuration when their genes contained an intron. Intron-dependent gene looping involved a physical interaction of the promoter and the terminator regions. In addition, the promoter region interacted with the 5′ splice site and the terminator with the 3′ splice site. Intron-mediated enhancement of transcription was completely abolished in the looping defective sua7-1 strain. No effect on splicing, however, was observed in sua7-1 strain. On the basis of these results, we propose a role for gene looping in intron-mediated transcriptional activation of genes in yeast.


Journal of Biological Chemistry | 2011

Novel Role for Mediator Complex Subunit Srb5/Med18 in Termination of Transcription

Athar Ansari

Background: Mediator plays a role in the recruitment and post-recruitment steps of transcription by RNAP II. Results: Mediator subunit Srb5 plays a role beyond the recruitment of preinitiation complex initiation and elongation steps of transcription. Conclusion: Mediator has a novel role in termination of transcription in budding yeast. Significance: Mediator-dependent termination may enhance transcription efficiency by coupling termination to reinitiation. Mediator complex functions at the recruitment as well as the post-recruitment steps of transcription. Here we provide evidence for a novel role of Mediator in termination of transcription. Mediator subunit Srb5/Med18 cross-links to the 5′ and 3′ ends of INO1 and CHA1. In srb5− cells, recruitment of TATA-binding protein (TBP) and transcription factor IIB (TFIIB) onto the promoter of these genes remained unaffected, but cross-linking of the cleavage-polyadenylation factors Rna15 and Pta1 toward the 3′ end of genes was compromised. In these cells, RNA polymerase II accumulated near the 3′ end of genes and beyond. Transcription run-on analysis confirmed a transcription readthrough phenotype in the absence of Srb5/Med18. These results strongly suggest that Mediator subunit Srb5/Med18 is required for proper termination of transcription of a subset of genes in budding yeast.


Molecular Cell | 2016

Regulated Formation of lncRNA-DNA Hybrids Enables Faster Transcriptional Induction and Environmental Adaptation.

Sara C. Cloutier; Siwen Wang; Wai Kit Ma; Nadra Al Husini; Zuzer Dhoondia; Athar Ansari; Pete E. Pascuzzi; Elizabeth J. Tran

Long non-coding (lnc)RNAs, once thought to merely represent noise from imprecise transcription initiation, have now emerged as major regulatory entities in all eukaryotes. In contrast to the rapidly expanding identification of individual lncRNAs, mechanistic characterization has lagged behind. Here we provide evidence that the GAL lncRNAs in the budding yeast S. cerevisiae promote transcriptional induction in trans by formation of lncRNA-DNA hybrids or R-loops. The evolutionarily conserved RNA helicase Dbp2 regulates formation of these R-loops as genomic deletion or nuclear depletion results in accumulation of these structures across the GAL cluster gene promoters and coding regions. Enhanced transcriptional induction is manifested by lncRNA-dependent displacement of the Cyc8 co-repressor and subsequent gene looping, suggesting that these lncRNAs promote induction by altering chromatin architecture. Moreover, the GAL lncRNAs confer a competitive fitness advantage to yeast cells because expression of these non-coding molecules correlates with faster adaptation in response to an environmental switch.


Journal of Biological Chemistry | 2011

Evidence for a Complex of Transcription Factor IIB (TFIIB) with Poly(A) Polymerase and Cleavage Factor 1 Subunits Required for Gene Looping

Scott Medler; Nadra Al Husini; Sarita Raghunayakula; Ashley Aldea; Athar Ansari

Gene looping, defined as the interaction of the promoter and the terminator regions of a gene during transcription, requires transcription factor IIB (TFIIB). We have earlier demonstrated association of TFIIB with the distal ends of a gene in an activator-dependent manner (El Kaderi, B., Medler, S., Raghunayakula, S., and Ansari, A. (2009) J. Biol. Chem. 284, 25015–25025). The presence of TFIIB at the 3′ end of a gene required its interaction with cleavage factor 1 (CF1) 3′ end processing complex subunit Rna15. Here, employing affinity chromatography and glycerol gradient centrifugation, we show that TFIIB associates with poly(A) polymerase and the entire CF1 complex in yeast cells. The factors required for general transcription such as TATA-binding protein, RNA polymerase II, and TFIIH are not a component of the TFIIB complex. This holo-TFIIB complex was resistant to MNase digestion. The complex was observed only in the looping-competent strains, but not in the looping-defective sua7-1 strain. The requirement of Rna15 in gene looping has been demonstrated earlier. Here we provide evidence that poly(A) polymerase (Pap1) as well as CF1 subunits Rna14 and Pcf11 are also required for loop formation of MET16 and INO1 genes. Accordingly, cross-linking of TFIIB to the 3′ end of genes was abolished in the mutants of Pap1, Rna14, and Pcf11. We further show that in sua7-1 cells, where holo-TFIIB complex is not formed, the kinetics of activated transcription is altered. These results suggest that a complex of TFIIB, CF1 subunits, and Pap1 exists in yeast cells. Furthermore, TFIIB interaction with the CF1 complex and Pap1 is crucial for gene looping and transcriptional regulation.


Journal of Biological Chemistry | 2013

Srb5/Med18-mediated Termination of Transcription is Dependent on Gene Looping

Athar Ansari

Background: Mediator subunit Srb5/Med18 is required for termination of transcription by RNAP II. Results: Srb5/Med18 does not affect CTD-Ser2 phosphorylation but affects recruitment of the CF1 complex on a gene. Srb5/Med18 is required for gene looping. Conclusion: Srb5/Med18 facilitates termination of transcription through gene looping. Significance: Gene looping may have a general role in the termination of transcription. We have earlier demonstrated the involvement of Mediator subunit Srb5/Med18 in the termination of transcription for a subset of genes in yeast. Srb5/Med18 could affect termination either indirectly by modulating CTD-Ser2 phosphorylation near the 3′ end of a gene or directly by physically interacting with the cleavage and polyadenylation factor or cleavage factor 1 (CF1) complex and facilitating their recruitment to the terminator region. Here, we show that the CTD-Ser2 phosphorylation pattern on Srb5/Med18-dependent genes remains unchanged in the absence of Srb5 in cells. Coimmunoprecipitation analysis revealed the physical interaction of Srb5/Med18 with the CF1 complex. No such interaction of Srb5/Med18 with the cleavage and polyadenylation factor complex, however, could be detected. The Srb5/Med18-CF1 interaction was not observed in the looping defective sua7-1 strain. Srb5/Med18 cross-linking to the 3′ end of genes was also abolished in the sua7-1 strain. Chromosome conformation capture analysis revealed that the looped architecture of Srb5/Med18-dependent genes was abrogated in srb5− cells. Furthermore, Srb5-dependent termination of transcription was compromised in the looping defective sua7-1 cells. The overall conclusion of these results is that gene looping plays a crucial role in Srb5/Med18 facilitated termination of transcription, and the looped gene architecture may have a general role in termination of transcription in budding yeast.


PLOS Genetics | 2013

A Role for CF1A 3′ End Processing Complex in Promoter-Associated Transcription

Nadra Al Husini; Paul Kudla; Athar Ansari

The Cleavage Factor 1A (CF1A) complex, which is required for the termination of transcription in budding yeast, occupies the 3′ end of transcriptionally active genes. We recently demonstrated that CF1A subunits also crosslink to the 5′ end of genes during transcription. The presence of CF1A complex at the promoter suggested its possible involvement in the initiation/reinitiation of transcription. To check this possibility, we performed transcription run-on assay, RNAP II-density ChIP and strand-specific RT-PCR analysis in a mutant of CF1A subunit Clp1. As expected, RNAP II read through the termination signal in the temperature-sensitive mutant of clp1 at elevated temperature. The transcription readthrough phenotype was accompanied by a decrease in the density of RNAP II in the vicinity of the promoter region. With the exception of TFIIB and TFIIF, the recruitment of the general transcription factors onto the promoter, however, remained unaffected in the clp1 mutant. These results suggest that the CF1A complex affects the recruitment of RNAP II onto the promoter for reinitiation of transcription. Simultaneously, an increase in synthesis of promoter-initiated divergent antisense transcript was observed in the clp1 mutant, thereby implicating CF1A complex in providing directionality to the promoter-bound polymerase. Chromosome Conformation Capture (3C) analysis revealed a physical interaction of the promoter and terminator regions of a gene in the presence of a functional CF1A complex. Gene looping was completely abolished in the clp1 mutant. On the basis of these results, we propose that the CF1A-dependent recruitment of RNAP II onto the promoter for reinitiation and the regulation of directionality of promoter-associated transcription are accomplished through gene looping.


Current protocols in pharmacology | 2012

Analysis of Interactions Between Genomic Loci Through Chromosome Conformation Capture (3C)

Belal El Kaderi; Scott Medler; Athar Ansari

Genome architecture plays a significant role in the regulation of DNA-based cellular processes such as transcription and recombination. The successful accomplishment of these processes involves coordinated interaction of DNA elements located at a distance from each other. The Chromosome Conformation Capture (3C) assay is a convenient tool for identification of physical association between spatially separated DNA elements in a cell under physiological conditions. The principle of 3C is to convert physical chromosomal interactions into specific DNA ligation products, which are then detected by PCR. The 3C protocol was originally used to identify long-range, stable chromosomal interactions in yeast. Here we describe a modified 3C procedure that can detect transient, short-range interactions of DNA elements separated by a distance of less than 700 bp. This method has been successfully used to detect dynamic interaction of transcription regulatory elements in yeast and can be used for detecting similar interactions of other genomic regions.


PLOS Genetics | 2016

Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality.

Neha Agarwal; Athar Ansari

Enhancement of transcription by a splicing-competent intron is an evolutionarily conserved feature among eukaryotes. The molecular mechanism underlying the phenomenon, however, is not entirely clear. Here we show that the intron is an important regulator of promoter directionality. Employing strand-specific transcription run-on (TRO) analysis, we show that the transcription of mRNA is favored over the upstream anti-sense transcripts (uaRNA) initiating from the promoter in the presence of an intron. Mutation of either the 5′ or 3′ splice site resulted in the reversal of promoter directionality, thereby suggesting that it is not merely the 5′ splice site but the entire splicing-competent intron that regulates transcription directionality. ChIP analysis revealed the recruitment of termination factors near the promoter region in the presence of an intron. Removal of intron or the mutation of splice sites adversely affected the promoter localization of termination factors. We have earlier demonstrated that the intron-mediated enhancement of transcription is dependent on gene looping. Here we show that gene looping is crucial for the recruitment of termination factors in the promoter-proximal region of an intron-containing gene. In a looping-defective mutant, despite normal splicing, the promoter occupancy of factors required for poly(A)-dependent termination of transcription was compromised. This was accompanied by a concomitant loss of transcription directionality. On the basis of these results, we propose that the intron-dependent gene looping places the terminator-bound factors in the vicinity of the promoter region for termination of the promoter-initiated upstream antisense transcription, thereby conferring promoter directionality.


Scientific Reports | 2015

Gene looping facilitates TFIIH kinase-mediated termination of transcription

Scott Medler; Athar Ansari

TFIIH is a general transcription factor with kinase and helicase activities. The kinase activity resides in the Kin28 subunit of TFIIH. The role of Kin28 kinase in the early steps of transcription is well established. Here we report a novel role of Kin28 in the termination of transcription. We show that RNAPII reads through a termination signal upon kinase inhibition. Furthermore, the recruitment of termination factors towards the 3′ end of a gene was compromised in the kinase mutant, thus confirming the termination defect. A concomitant decrease in crosslinking of termination factors near the 5′ end of genes was also observed in the kinase-defective mutant. Simultaneous presence of termination factors towards both the ends of a gene is indicative of gene looping; while the loss of termination factor occupancy from the distal ends suggest the abolition of a looped gene conformation. Accordingly, CCC analysis revealed that the looped architecture of genes was severely compromised in the Kin28 kinase mutant. In a looping defective sua7-1 mutant, even the enzymatically active Kin28 kinase could not rescue the termination defect. These results strongly suggest a crucial role of Kin28 kinase-dependent gene looping in the termination of transcription in budding yeast.


Journal of Visualized Experiments | 2017

Analysis of Termination of Transcription Using BrUTP-strand-specific Transcription Run-on (TRO) Approach

Zuzer Dhoondia; Ricci Tarockoff; Nadra Al-Husini; Scott Medler; Neha Agarwal; Athar Ansari

This manuscript describes a protocol for detecting transcription termination defect in vivo. The strand-specific TRO protocol using BrUTP described here is a powerful experimental approach for analyzing the transcription termination defect under physiological conditions. Like the traditional TRO assay, it relies on the presence of a transcriptionally active polymerase beyond the 3 end of the gene as an indicator of a transcription termination defect1. It overcomes two major problems encountered with the traditional TRO assay. First, it can detect if the polymerase reading through the termination signal is the one that initiated transcription from the promoter-proximal region, or if it is simply representing a pervasively transcribing polymerase that initiated non-specifically from somewhere in the body or the 3 end of the gene. Secondly, it can distinguish if the transcriptionally active polymerase signal beyond the terminator region is truly the readthrough sense mRNA transcribing polymerase or a terminator-initiated non-coding anti-sense RNA signal. Briefly, the protocol involves permeabilizing the exponentially growing yeast cells, allowing the transcripts that initiated in vivo to elongate in the presence of the BrUTP nucleotide, purifying BrUTP-labelled RNA by the affinity approach, reverse transcribing the purified nascent RNA and amplifying the cDNA using strand-specific primers flanking the promoter and the terminator regions of the gene2.

Collaboration


Dive into the Athar Ansari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge