Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Athar H. Chishti is active.

Publication


Featured researches published by Athar H. Chishti.


Molecular and Cellular Biology | 2001

Disruption of the Mouse μ-Calpain Gene Reveals an Essential Role in Platelet Function

Mohammad Azam; Shaida Andrabi; Kenneth E. Sahr; Lakshmi Kamath; Athan Kuliopulos; Athar H. Chishti

ABSTRACT Conventional calpains are ubiquitous calcium-regulated cysteine proteases that have been implicated in cytoskeletal organization, cell proliferation, apoptosis, cell motility, and hemostasis. There are two forms of conventional calpains: the μ-calpain, or calpain I, which requires micromolar calcium for half-maximal activation, and the m-calpain, or calpain II, which functions at millimolar calcium concentrations. We evaluated the functional role of the 80-kDa catalytic subunit of μ-calpain by genetic inactivation using homologous recombination in embryonic stem cells. The μ-calpain-deficient mice are viable and fertile. The complete deficiency of μ-calpain causes significant reduction in platelet aggregation and clot retraction but surprisingly the mutant mice display normal bleeding times. No detectable differences were observed in the cleavage pattern and kinetics of calpain substrates such as the β3 subunit of αIIbβ3 integrin, talin, and ABP-280 (filamin). However, μ-calpain null platelets exhibit impaired tyrosine phosphorylation of several proteins including the β3 subunit of αIIbβ3 integrin, correlating with the agonist-induced reduction in platelet aggregation. These results provide the first direct evidence that μ-calpain is essential for normal platelet function, not by affecting the cleavage of cytoskeletal proteins but by potentially regulating the state of tyrosine phosphorylation of the platelet proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes

Vikas Goel; Xuerong Li; Huiqing Chen; Shih-Chun Liu; Athar H. Chishti; Steven S. Oh

We report the molecular identification of a sialic acid-independent host–parasite interaction in the Plasmodium falciparum malaria parasite invasion of RBCs. Two nonglycosylated exofacial regions of human band 3 in the RBC membrane were identified as a crucial host receptor binding the C-terminal processing products of merozoite surface protein 1 (MSP1). Peptides derived from the receptor region of band 3 inhibited the invasion of RBCs by P. falciparum. A major segment of the band 3 receptor (5ABC) bound to native MSP142 and blocked the interaction of native MSP142 with intact RBCs in vitro. Recombinant MSP119 (the C-terminal domain of MSP142) bound to 5ABC as well as RBCs. The binding of both native MSP142 and recombinant MSP119 was not affected by the neuraminidase treatment of RBCs, but sensitive to chymotrypsin treatment. In addition, recombinant MSP138 showed similar interactions with the band 3 receptor and RBCs, although the interaction was relatively weak. These findings suggest that the chymotrypsin-sensitive MSP1–band 3 interaction plays a role in a sialic acid-independent invasion pathway and reveal the function of MSP1 in the Plasmodium invasion of RBCs.


Journal of Biological Chemistry | 1998

Plasma Membrane Ca2+ ATPase Isoform 4b Binds to Membrane-associated Guanylate Kinase (MAGUK) Proteins via Their PDZ (PSD-95/Dlg/ZO-1) Domains

Eunjoon Kim; Steven J. DeMarco; Shirin M. Marfatia; Athar H. Chishti; Morgan Sheng; Emanuel E. Strehler

Plasma membrane Ca2+ ATPases are P-type pumps important for intracellular Ca2+homeostasis. The extreme C termini of alternatively spliced “b”-type Ca2+ pump isoforms resemble those of K+ channels andN-methyl-d-aspartate receptor subunits that interact with channel-clustering proteins of the membrane-associated guanylate kinase (MAGUK) family via PDZ domains. Yeast two-hybrid assays demonstrated strong interaction of Ca2+ pump 4b with the PDZ1+2 domains of several mammalian MAGUKs. Pump 4b and PSD-95 could be co-immunoprecipitated from COS-7 cells overexpressing these proteins. Surface plasmon resonance revealed that a C-terminal pump 4b peptide interacted with the PDZ1+2 domains of hDlg with nanomolar affinity (K D = 1.6 nm), whereas binding to PDZ3 was in the micromolar range (K D = 1.2 μm). In contrast, the corresponding C-terminal peptide of Ca2+ pump 2b interacted weakly with PDZ1+2 and not at all with PDZ3 of hDlg. Ca2+ pump 4b bound strongly to PDZ1+2+3 of hDlg on filter assays, whereas isoform 2b bound weakly, and the splice variants 2a and 4a failed to bind. Together, these data demonstrate a direct physical binding of Ca2+ pump isoform 4b to MAGUKs via their PDZ domains and reveal a novel role of alternative splicing within the family of plasma membrane Ca2+ pumps. Alternative splicing may dictate their specific interaction with PDZ domain-containing proteins, potentially influencing their localization and incorporation into functional multiprotein complexes at the plasma membrane.


Molecular and Biochemical Parasitology | 2000

Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton.

S.Steven Oh; Sabine Voigt; Derek R. Fisher; S. J. Yi; Patrick J LeRoy; Laura H. Derick; Shih-Chun Liu; Athar H. Chishti

A distinctive pathological feature of Plasmodium falciparum malaria is the endothelial attachment of erythrocytes infected with mature asexual-stage parasites in microvessels of the major organs. Electron-dense protrusions described as knobs are displayed on the surface of parasitized erythrocytes and act as attachment points in cytoadherence. Parasite-encoded knob-associated histidine-rich protein (KAHRP) is a major component of knobs found on the cytoplasmic side of the host cell membrane. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of parasite-encoded cytoadherence receptors localized to knobs on the surface of parasitized erythrocytes. Despite its high antigenic diversity, PfEMP1 has a remarkably conserved cytoplasmic domain. We demonstrate in this study that the cytoplasmic domain of PfEMP1 (VAR(CD)) binds to host spectrin and actin and to full-length KAHRP in vitro. Apparent dissociation constants determined for VAR(CD)/F-actin and VAR(CD)/KAHRP interactions are 44.9+/-6.4 and 10. 7+/-2.2 nM, respectively. Further, we provide evidence that KAHRP polypeptides self-associate in solution to form structures similar to knobs and show binding of self-associated KAHRP clusters to spectrin-actin-protein 4.1 complexes. Findings in this study suggest that PfEMP1 is localized to the knob in P. falciparum-infected erythrocytes by binding to the host spectrin-actin junction and to self-associated KAHRP through its conserved cytoplasmic domain.


Journal of Biological Chemistry | 1997

Human Homologue of the Drosophila Discs Large Tumor Suppressor Binds to p56 lck Tyrosine Kinase and Shaker Type Kv1.3 Potassium Channel in T Lymphocytes

Toshihiko Hanada; Lunhui Lin; Chandy Kg; Steven S. Oh; Athar H. Chishti

Human homologue of the Drosophiladiscs large tumor suppressor protein (hDlg) belongs to a newly discovered family of proteins termed MAGUKs that appear to have structural as well as signaling functions. Consistent with the multi-domain organization of MAGUKs, hDlg consists of three copies of the PDZ (PSD-95/Discs large/zO-1) domain, an SH3 motif, and a guanylate kinase-like domain. In addition, the hDlg contains an amino-terminal proline-rich domain that is absent in other MAGUKs. To explore the role of hDlg in cell signaling pathways, we used human T lymphocytes as a model system to investigate interaction of hDlg with known tyrosine kinases. In human T lymphocyte cell lines, binding properties of hDlg were studied by immunoprecipitation, immunoblotting, and immune complex kinase assays. Our results show that protein tyrosine kinase activity is associated with the immunoprecipitates of hDlg. Immunoblotting experiments revealed that the immunoprecipitates of hDlg contain p56 lck , a member of the Src family of tyrosine kinases. The specificity of the interaction is demonstrated by the lack of p59 fyn tyrosine kinase and phosphotidylinositol 3-kinase in the hDlg immunoprecipitates. Direct interaction between hDlg and p56 lck is demonstrated using glutathione S-transferase fusion proteins of hDlg and recombinant p56 lck expressed in the baculovirus-infected Sf9 cells. The p56 lck binding site was localized within the amino-terminal segment of hDlg containing proline-rich domain. In addition, we show in vivo association of hDlg with Kv1.3 channel, which was expressed in T lymphocytes as an epitope-tagged protein using a vaccinia virus expression system. Taken together, these results provide the first evidence of a direct interaction between hDlg and p56 lck tyrosine kinase and suggest a novel function of hDlg in coupling tyrosine kinase and voltage-gated potassium channel in T lymphocytes.


Journal of Cell Biology | 2007

A molecular switch that controls cell spreading and retraction

Panagiotis Flevaris; Aleksandra Stojanovic; Haixia Gong; Athar H. Chishti; Emily J. Welch; Xiaoping Du

Integrin-dependent cell spreading and retraction are required for cell adhesion, migration, and proliferation, and thus are important in thrombosis, wound repair, immunity, and cancer development. It remains unknown how integrin outside-in signaling induces and controls these two opposite processes. This study reveals that calpain cleavage of integrin β3 at Tyr759 switches the functional outcome of integrin signaling from cell spreading to retraction. Expression of a calpain cleavage–resistant β3 mutant in Chinese hamster ovary cells causes defective clot retraction and RhoA-mediated retraction signaling but enhances cell spreading. Conversely, a calpain-cleaved form of β3 fails to mediate cell spreading, but inhibition of the RhoA signaling pathway corrects this defect. Importantly, the calpain-cleaved β3 fails to bind c-Src, which is required for integrin-induced cell spreading, and this requirement of β3-associated c-Src results from its inhibition of RhoA-dependent contractile signals. Thus, calpain cleavage of β3 at Tyr759 relieves c-Src–mediated RhoA inhibition, activating the RhoA pathway that confines cell spreading and causes cell retraction.


Journal of Cell Biology | 2006

Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity

Kaori Horiguchi; Toshihiko Hanada; Yasuhisa Fukui; Athar H. Chishti

Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase, is an important second messenger implicated in signal transduction and membrane transport. In hippocampal neurons, the accumulation of PIP3 at the tip of neurite initiates the axon specification and neuronal polarity formation. We show that guanylate kinase–associated kinesin (GAKIN), a kinesin-like motor protein, directly interacts with a PIP3-interacting protein, PIP3BP, and mediates the transport of PIP3-containing vesicles. Recombinant GAKIN and PIP3BP form a complex on synthetic liposomes containing PIP3 and support the motility of the liposomes along microtubules in vitro. In PC12 cells and cultured hippocampal neurons, transport activity of GAKIN contributes to the accumulation of PIP3 at the tip of neurites. In hippocampal neurons, altered accumulation of PIP3 by overexpression of GAKIN constructs led to the loss of the axonally differentiated neurites. Together, these results suggest that, in neurons, the GAKIN–PIP3BP complex transports PIP3 to the neurite ends and regulates neuronal polarity formation.


Journal of Biological Chemistry | 2000

hCASK and hDlg Associate in Epithelia, and Their Src Homology 3 and Guanylate Kinase Domains Participate in Both Intramolecular and Intermolecular Interactions

Stacey L. Nix; Athar H. Chishti; James M. Anderson; Zenta Walther

Membrane-associated guanylate kinase (MAGUK) proteins act as molecular scaffolds organizing multiprotein complexes at specialized regions of the plasma membrane. All MAGUKs contain a Src homology 3 (SH3) domain and a region homologous to yeast guanylate kinase (GUK). We showed previously that one MAGUK protein, human CASK (hCASK), is widely expressed and associated with epithelial basolateral plasma membranes. We now report that hCASK binds another MAGUK, humandiscs large (hDlg). Immunofluorescence microscopy demonstrates that hCASK and hDlg colocalize at basolateral membranes of epithelial cells in small and large intestine. These proteins co-precipitate from lysates of an intestinal cell line, Caco-2. The GUK domain of hCASK binds the SH3 domain of hDlg in both yeast two-hybrid and fusion protein binding assays, and it is required for interaction with hDlg in transfected HEK293 cells. In addition, the SH3 and GUK domains of each protein participate in intramolecular binding thatin vitro predominates over intermolecular binding. The SH3 and GUK domains of human p55 display the same interactions in yeast two-hybrid assays as those of hCASK. Not all SH3-GUK interactions among these MAGUKs are permissible, however, implying specificity to SH3-GUK interactions in vivo. These results suggest MAGUK scaffold assembly may be regulated through effects on intramolecular SH3-GUK binding.


Journal of Biological Chemistry | 2004

A co-ligand complex anchors Plasmodium falciparum merozoites to the erythrocyte invasion receptor band 3.

Xuerong Li; Huiqing Chen; Thein H. Oo; Thomas M. Daly; Lawrence W. Bergman; Shih Chun Liu; Athar H. Chishti; Steven S. Oh

In Plasmodium falciparum malaria, erythrocyte invasion by circulating merozoites may occur via two distinct pathways involving either a sialic acid-dependent or -independent mechanism. Earlier, we identified two nonglycosylated exofacial regions of erythrocyte band 3 termed 5ABC and 6A as an important host receptor in the sialic acid-independent invasion pathway. 5ABC, a major segment of this receptor, interacts with the 42-kDa processing product of merozoite surface protein 1 (MSP142) through its 19-kDa C-terminal domain. Here, we show that two regions of merozoite surface protein 9 (MSP9), also known as acidic basic repeat antigen, interact directly with 5ABC during erythrocyte invasion by P. falciparum. Native MSP9 as well as recombinant polypeptides derived from two regions of MSP9 (MSP9/Δ1 and MSP9/Δ2) interacted with both 5ABC and intact erythrocytes. Soluble 5ABC added to the assay mixture drastically diminished the binding of MSP9 to erythrocytes. Recombinant MSP9/Δ1 and MSP9/Δ2 present in the culture medium blocked P. falciparum reinvasion into erythrocytes in vitro. Native MSP9 and MSP142, the two ligands binding to the 5ABC receptor, existed as a stable complex. Our results establish a novel concept wherein the merozoite exploits a specific complex of co-ligands on its surface to target a single erythrocyte receptor during invasion. This new paradigm poses a new challenge in the development of a vaccine for blood stage malaria.


Journal of Biological Chemistry | 1997

THE PDZ DOMAIN OF HUMAN ERYTHROCYTE P55 MEDIATES ITS BINDING TO THE CYTOPLASMIC CARBOXYL TERMINUS OF GLYCOPHORIN C: ANALYSIS OF THE BINDING INTERFACE BY IN VITRO MUTAGENESIS

Shirin M. Marfatia; João H. Morais-Cabral; Anthony C. Kim; Olwyn Byron; Athar H. Chishti

The PDZ domain, also known as the GLGF repeat/DHR domain, is an ∼90-amino acid motif discovered in a recently identified family of proteins termed MAGUKs (membrane-associated guanylatekinase homologues). Sequence comparison analysis has since identified PDZ domains in over 50 proteins. Like SH2 and SH3 domains, the PDZ domains mediate specific protein-protein interactions, whose specificities appear to be dictated by the primary structure of the PDZ domain as well as its binding target. Using recombinant fusion proteins and a blot overlay assay, we show that a single copy of the PDZ domain in human erythrocyte p55 binds to the carboxyl terminus of the cytoplasmic domain of human erythroid glycophorin C. Deletion mutagenesis of 21 amino acids at the amino terminus of the p55 PDZ domain completely abrogates its binding activity for glycophorin C. Using an alanine scan and surface plasmon resonance technique, we identify residues in the cytoplasmic domain of glycophorin C that are critical for its interaction with the PDZ domain. The recognition specificity of the p55 PDZ domain appears to be unique, since the three PDZ domains of hDlg (human lymphocyte homologue of the Drosophiladiscs large tumor suppressor) do not bind the cytoplasmic domain of glycophorin C. Taken together with our previous studies, these results complete the identification of interacting domains in the ternary complex between p55, glycophorin C, and protein 4.1. Implications of these findings are discussed in terms of binding specificity and the regulation of cytoskeleton-membrane interactions.

Collaboration


Dive into the Athar H. Chishti's collaboration.

Top Co-Authors

Avatar

Toshihiko Hanada

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuerong Li

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anwar A. Khan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiqing Chen

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge