Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manjit Hanspal is active.

Publication


Featured researches published by Manjit Hanspal.


Cell | 1996

ANION EXCHANGER 1 (BAND 3) IS REQUIRED TO PREVENT ERYTHROCYTE MEMBRANE SURFACE LOSS BUT NOT TO FORM THE MEMBRANE SKELETON

Luanne L. Peters; Ramesh A. Shivdasani; Shih-Chun Liu; Manjit Hanspal; Kathryn M. John; Jennifer M. Gonzalez; Carlo Brugnara; Babette Gwynn; Narla Mohandas; Seth L. Alper; Stuart H. Orkin; Samuel E. Lux

The red blood cell (RBC) membrane protein AE1 provides high affinity binding sites for the membrane skeleton, a structure critical to RBC integrity. AE1 biosynthesis is postulated to be required for terminal erythropoiesis and membrane skeleton assembly. We used targeted mutagenesis to assess AE1 function in vivo. RBCs lacking AE1 spontaneously shed membrane vesicles and tubules, leading to severe spherocytosis and hemolysis, but the levels of the major skeleton components, the synthesis of spectrin in mutant erythroblasts, and skeletal architecture are normal or nearly normal. The results indicate that AE1 does not regulate RBC membrane skeleton assembly in vivo but is essential for membrane stability. We postulate that stabilization is achieved through AE1-lipid interactions and that loss of these interactions is a key pathogenic event in hereditary spherocytosis.


Journal of Biological Chemistry | 2006

Absence of Erythroblast Macrophage Protein (Emp) Leads to Failure of Erythroblast Nuclear Extrusion

Shivani Soni; Shashi Bala; Babette Gwynn; Kenneth E. Sahr; Luanne L. Peters; Manjit Hanspal

In mammals, the functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by developing erythroblasts. Erythroblast-macrophage interactions play a central role in the terminal maturation of erythroblasts, including enucleation. One possible mediator of this cell-cell interaction is the protein Emp (erythroblast macrophage protein). We used targeted gene inactivation to define the function of Emp during hematopoiesis. Emp null embryos die perinatally and show profound alterations in the hematopoietic system. A dramatic increase in the number of nucleated, immature erythrocytes is seen in the peripheral blood of Emp null fetuses. In the fetal liver virtually no erythroblastic islands are observed, and the number of F4/80-positive macrophages is substantially reduced. Those present lack cytoplasmic projections and are unable to interact with erythroblasts. Interestingly, wild type macrophages can bind Emp-deficient erythroblasts, but these erythroblasts do not extrude their nuclei, suggesting that Emp impacts enucleation in a cell autonomous fashion. Previous studies have implicated the actin cytoskeleton and its reorganization in both erythroblast enucleation as well as in macrophage development. We demonstrate that Emp associates with F-actin and that this interaction is important in the normal distribution of F-actin in both erythroblasts and macrophages. Thus, Emp appears to be required for erythroblast enucleation and in the development of the mature macrophages. The availability of an Emp null model provides a unique experimental system to study the enucleation process and to evaluate the function of macrophages in definitive erythropoiesis.


Journal of Clinical Investigation | 1996

Combination of two mutant alpha spectrin alleles underlies a severe spherocytic hemolytic anemia.

Hynek Wichterle; Manjit Hanspal; Jiri Palek; Petr Jarolim

We studied a patient with a severe spherocytic hemolytic anemia without family history of spherocytosis. Analysis of patients erythrocyte membrane proteins revealed spectrin deficiency and a truncated alpha spectrin protein. We determined that the patient is a compound heterozygote with two mutations in alpha spectrin gene. Mutation in the paternal allele, designated alpha spectrin(PRAGUE), is a transition A to G in the penultimate position of intron 36 that leads to skipping of exon 37, frameshift, and production of the truncated alpha spectrin protein. The maternal allele, designated alpha spectrin(LEPRA), contains transition C-->T in position -99 of intron 30. This mutation enhances an alternative acceptor splice site 70 nucleotides upstream from the regular site. The alternative splicing causes a frameshift and premature termination of translation leading to a significant decrease in alpha spectrin production. The alpha(LEPRA) mutation is linked to a spectrin alphaIIa marker that was found to be associated with recessive or nondominant spectrin-deficient hereditary spherocytosis in approximately 50% of studied families. We conclude that the alpha(LEPRA) mutation combined in trans with the alpha(PRAGUE) mutation underlie the severe hemolytic anemia in the proband. We suggest that allele alpha spectrin(LEPRA) may be frequently involved in pathogenesis of recessive or nondominant spectrin-deficient hereditary spherocytosis.


Molecular and Biochemical Parasitology | 2000

A cysteine protease activity from Plasmodium falciparum cleaves human erythrocyte ankyrin.

Primrose Raphael; Yuichi Takakuwa; Sumie Manno; Shih-Chun Liu; Athar H. Chishti; Manjit Hanspal

The malaria parasite Plasmodium falciparum undergoes distinct morphologic changes during its 48-h life cycle inside human red blood cells. Parasite proteinases appear to play important roles at all stages of the erythrocytic cycle of human malaria. Proteases involved in erythrocyte rupture and invasion are possibly required to breakdown erythrocyte membrane skeleton. To identify such proteases, soluble cytosolic extract of isolated trophozoites/schizonts was incubated with erythrocyte membrane ghosts or spectrin-actin depleted inside-out vesicles, which were then analyzed by SDS-PAGE. In both cases, a new protein band of 155 kDa was detected. The N-terminal peptide sequencing established that the 155 kDa band represents truncated ankyrin. Immunoblot analysis using defined monoclonal antibodies confirmed that ankyrin was cleaved at the C-terminus. While the enzyme preferentially cleaved ankyrin, degradation of protein 4.1 was also observed at high concentrations of the enzyme. The optimal activity of the purified enzyme, using ankyrin as substrate, was observed at pH 7.0-7.5, and the activity was strongly inhibited by standard inhibitors of cysteine proteinases (cystatin, NEM, leupeptin, E-64 and MDL 28 170), but not by inhibitors of aspartic (pepstatin) or serine (PMSF, DFP) proteinases. Furthermore, we demonstrate that protease digestion of ankyrin substantially reduces its interaction with ankyrin-depleted membrane vesicles. Ektacytometric measurements showed a dramatic increase in the rate of fragmentation of ghosts after treatment with the protease. Although the role of ankyrin cleavage in vivo remains to be determined, based on our findings we postulate that the parasite-derived cysteine protease activity cleaves host ankyrin thus weakening the ankyrin-band 3 binding interactions and destabilizing the erythrocyte membrane skeleton, which, in turn, facilitates parasite release. Further characterization of the enzyme may lead to the development of novel antimalarial drugs.


Journal of Clinical Investigation | 1995

Molecular basis of spectrin deficiency in beta spectrin Durham. A deletion within beta spectrin adjacent to the ankyrin-binding site precludes spectrin attachment to the membrane in hereditary spherocytosis.

Hani Hassoun; J. N. Vassiliadis; J. Murray; S. J. Yi; Manjit Hanspal; R. E. Ware; S. S. Winter; Shyh-Shin Chiou; Jiri Palek

We describe a spectrin variant characterized by a truncated beta chain and associated with hereditary spherocytosis. The clinical phenotype consists of a moderate hemolytic anemia with striking spherocytosis and mild spiculation of the red cells. We describe the biochemical characteristics of this truncated protein which constitutes only 10% of the total beta spectrin present on the membrane, resulting in spectrin deficiency. Analysis of reticulocyte cDNA revealed the deletion of exons 22 and 23. We show, using Southern blot analysis, that this truncation results from a 4.6-kb genomic deletion. To elucidate the basis for the decreased amount of the truncated protein on the membrane and the overall spectrin deficiency, we show that (a) the mutated gene is efficiently transcribed and its mRNA abundant in reticulocytes, (b) the mutant protein is normally synthesized in erythroid progenitor cells, (c) the stability of the mutant protein in the cytoplasm of erythroblasts parallels that of the normal beta spectrin, and (d) the abnormal protein is inefficiently incorporated into the membrane of erythroblasts. We conclude that the truncation within the beta spectrin leads to inefficient incorporation of the mutant protein into the skeleton despite its normal synthesis and stability. We postulate that this misincorporation results from conformational changes of the beta spectrin subunit affecting the binding of the abnormal heterodimer to ankyrin, and we provide evidence based on binding assays of recombinant synthetic peptides to inside-out-vesicles to support this model.


British Journal of Haematology | 1995

β spectrinPRAGUE: a truncated β spectrin producing spectrin deficiency, defective spectrin heterodimer self‐association and a phenotype of spherocytic elliptocytosis

Petr Jarolim; Hynek Wichterle; Manjit Hanspal; James Murray; Hillard L. Robin; Jiri Palek

Summary. Spherocytic elliptocytosis is a phenotypic hybrid between hereditary spherocytosis (HS) and hereditary elliptocytosis (HE) characterized by the presence of spheroovalocytes and spherocytes which exhibit increased osmotic fragility, indicating a deficiency of surface area. Both the spherocytic red cell morphology and the increased osmotic fragility distinguish this clinical entity from common HE. In contrast to common HE, the molecular basis of spherocytic elliptocytosis is unknown. Here we describe two members of a family who both have the characteristic features of spherocytic HE. We show that the underlying defect involves a G to C transversion at the ‐1 position of the acceptor splice site upstream of exon X of β spectrin leading to skipping of exon X from the mutant β spectrin mRNA allele. The mutant mRNA is present in reticulocytes in similar amounts as the normal mRNA. Pulse‐labelling of erythroblasts prepared from peripheral blood in a two‐phase liquid‐culture system reveals a decreased synthesis of the truncated β spectrin, a finding which is likely to underlie the moderately severe spectrin deficiency in the two patients. In addition, this mutant spectrin, similar to the previously reported spectrins, is defective in spectrin heterodimer self‐association. The spectrin deficiency, which represents a common finding in the majority of patients with HS, together with weakened spectrin heterodimer self‐association, as found in the majority of patients with common HE, provides a molecular explanation for the phenotype of spherocytic elliptocytosis in this kindred and, most likely, in other patients carrying similar β spectrin mutations.


Blood Cells Molecules and Diseases | 2008

Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.

Shivani Soni; Shashi Bala; Manjit Hanspal

Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.


Biochimica et Biophysica Acta | 2000

cDNA cloning of a novel cysteine protease of Plasmodium falciparum.

Manjit Hanspal

The cDNA for a novel Plasmodium cysteine protease (falcipain-2) has been isolated from a Plasmodium falciparum cDNA library. A 602 bp fragment was amplified from P. falciparum by PCR using degenerate oligonucleotide primers. The primers were designed based upon the amino acids flanking the active site cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteases. This fragment was used to screen a P. falciparum cDNA library and isolated a 2.1 kb clone that encoded a novel cysteine protease. The sequence of the 2.1 kb clone predicted a 56 kDa protein containing a typical signal sequence, a prosequence and a 24.7 kDa mature protease with 37% identity to falcipain-1, a hemoglobin-degrading cysteine protease of P. falciparum. Northern blot analysis detected a 2.1 kb message in trophozoites. Taken together, we have isolated a novel cysteine protease of P. falciparum, which may play an important role at the late stages of the erythrocytic cycle of the parasite.


Biochemical and Biophysical Research Communications | 2003

Activation of transglutaminase in μ-calpain null erythrocytes

Gerald M O’Neill; S. N. Prasanna Murthy; Laszlo Lorand; Richie Khanna; Shih-Chun Liu; Manjit Hanspal; Toshihiko Hanada; Athar H. Chishti

Intracellular transglutaminases (protein-glutamine: amine gamma-glutamyltransferase, EC 2.3.2.13) are calcium-dependent thiol enzymes that catalyze the covalent cross-linking of proteins, including those in the erythrocyte membrane. Several studies suggest that the activation of some transglutaminases is positively regulated by the calcium-dependent cysteine protease, mu-calpain. Using mu-calpain null (Capn1(-/-)) mouse erythrocytes, we demonstrate that the activation of soluble as well as membrane-bound forms of transglutaminase (TG2) in mouse erythrocytes was independent of mu-calpain. Also, the absence of mu-calpain or any detectable cysteine protease did not affect the transglutaminase activity in the erythrocyte lysate. Our studies also identify physiological substrates of mu-calpain in the erythrocyte membrane and show that their cleavage has no discernible effect on the transglutaminase mediated cross-linking of membrane proteins. Taken together, these data suggest the existence of a calpain-independent mechanism for the activation of transglutaminase 2 by calcium ions in the mouse erythrocytes and presumably also in non-erythroid cells.


Trends in Biochemical Sciences | 1998

The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane

Athar H. Chishti; Anthony C. Kim; Shirin M. Marfatia; Mohini Lutchman; Manjit Hanspal; Hitesh Jindal; Shih Chun Liu; Philip S. Low; Guy A. Rouleau; Narla Mohandas; Joel Anne Chasis; John G. Conboy; Phillipe Gascard; Yuichi Takakuwa; Shu-Ching Huang; Edward J. Benz; Anthony Bretscher; Richard G. Fehon; James F. Gusella; Vijaya Ramesh; Frank Solomon; Vincent T. Marchesi; Shoichiro Tsukita; Sachiko Tsukita; Monique Arpin; Daniel Louvard; Nicholas K. Tonks; James M. Anderson; Alan S. Fanning; Peter J. Bryant

Collaboration


Dive into the Manjit Hanspal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth E. Sahr

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Shashi Bala

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshihiko Hanada

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge