Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Athina Tzovara is active.

Publication


Featured researches published by Athina Tzovara.


Developmental Neuropsychology | 2012

A Tutorial Review of Electrical Neuroimaging From Group-Average to Single-Trial Event-Related Potentials

Athina Tzovara; Micah M. Murray; Christoph M. Michel; Marzia De Lucia

This tutorial review details some of the recent advances in signal analyses applied to event-related potential (ERP) data. These “electrical neuroimaging” analyses provide reference-independent measurements of response strength and response topography that circumvent statistical and interpretational caveats of canonical ERP analysis methods while also taking advantage of the greater information provided by high-density electrode montages. Electrical neuroimaging can be applied across scales ranging from group-averaged ERPs to single-subject and single-trial datasets. We illustrate these methods with a tutorial dataset and place particular emphasis on their suitability for studies of clinical and/or developmental populations.


Pattern Recognition | 2012

Decoding stimulus-related information from single-trial EEG responses based on voltage topographies

Athina Tzovara; Micah M. Murray; Gijs Plomp; Michael H. Herzog; Christoph M. Michel; Marzia De Lucia

Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis a vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subjects behavior and cognitive states, and the discrimination between healthy and clinical populations.


NeuroImage | 2012

The timing of exploratory decision-making revealed by single-trial topographic EEGanalyses.

Athina Tzovara; Micah M. Murray; Nicolas Bourdaud; Ricardo Chavarriaga; José del R. Millán; Marzia De Lucia

Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operators Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.


NeuroImage | 2012

Auditory perceptual decision-making based on semantic categorization of environmental sounds.

Marzia De Lucia; Athina Tzovara; Fosco Bernasconi; Lucas Spierer; Micah M. Murray

Discriminating complex sounds relies on multiple stages of differential brain activity. The specific roles of these stages and their links to perception were the focus of the present study. We presented 250 ms duration sounds of living and man-made objects while recording 160-channel electroencephalography (EEG). Subjects categorized each sound as that of a living, man-made or unknown item. We tested whether/when the brain discriminates between sound categories even when not transpiring behaviorally. We applied a single-trial classifier that identified voltage topographies and latencies at which brain responses are most discriminative. For sounds that the subjects could not categorize, we could successfully decode the semantic category based on differences in voltage topographies during the 116-174 ms post-stimulus period. Sounds that were correctly categorized as that of a living or man-made item by the same subjects exhibited two periods of differences in voltage topographies at the single-trial level. Subjects exhibited differential activity before the sound ended (starting at 112 ms) and on a separate period at ~270 ms post-stimulus onset. Because each of these periods could be used to reliably decode semantic categories, we interpreted the first as being related to an implicit tuning for sound representations and the second as being linked to perceptual decision-making processes. Collectively, our results show that the brain discriminates environmental sounds during early stages and independently of behavioral proficiency and that explicit sound categorization requires a subsequent processing stage.


Journal of Clinical Neurophysiology | 2014

Automated auditory mismatch negativity paradigm improves coma prognostic accuracy after cardiac arrest and therapeutic hypothermia.

Andrea O. Rossetti; Athina Tzovara; Micah M. Murray; De Lucia M; Mauro Oddo

Purpose: EEG and somatosensory evoked potential are highly predictive of poor outcome after cardiac arrest; their accuracy for good recovery is however low. We evaluated whether addition of an automated mismatch negativity–based auditory discrimination paradigm (ADP) to EEG and somatosensory evoked potential improves prediction of awakening. Methods: EEG and ADP were prospectively recorded in 30 adults during therapeutic hypothermia and in normothermia. We studied the progression of auditory discrimination on single-trial multivariate analyses from therapeutic hypothermia to normothermia, and its correlation to outcome at 3 months, assessed with cerebral performance categories. Results: At 3 months, 18 of 30 patients (60%) survived; 5 had severe neurologic impairment (cerebral performance categories = 3) and 13 had good recovery (cerebral performance categories = 1–2). All 10 subjects showing improvements of auditory discrimination from therapeutic hypothermia to normothermia regained consciousness: ADP was 100% predictive for awakening. The addition of ADP significantly improved mortality prediction (area under the curve, 0.77 for standard model including clinical examination, EEG, somatosensory evoked potential, versus 0.86 after adding ADP, P = 0.02). Conclusions: This automated ADP significantly improves early coma prognostic accuracy after cardiac arrest and therapeutic hypothermia. The progression of auditory discrimination is strongly predictive of favorable recovery and appears complementary to existing prognosticators of poor outcome. Before routine implementation, validation on larger cohorts is warranted.


Annals of Neurology | 2016

Prediction of awakening from hypothermic post anoxic coma based on auditory discrimination.

Athina Tzovara; Andrea O. Rossetti; Elsa Juan; Tamarah Suys; Dragana Viceic; Marco Rusca; Mauro Oddo; Marzia De Lucia

Most of the available clinical tests for prognosis of postanoxic coma are informative of poor outcome. Previous work has shown that an improvement in auditory discrimination over the first days of coma is predictive of awakening. Here, we aimed at evaluating this test on a large cohort of patients undergoing therapeutic hypothermia and at investigating its added value on existing clinical measures.


Frontiers in Psychology | 2014

Robust discrimination between EEG responses to categories of environmental sounds in early coma

Natacha Cossy; Athina Tzovara; Alexandre Simonin; Andrea O. Rossetti; Marzia De Lucia

Humans can recognize categories of environmental sounds, including vocalizations produced by humans and animals and the sounds of man-made objects. Most neuroimaging investigations of environmental sound discrimination have studied subjects while consciously perceiving and often explicitly recognizing the stimuli. Consequently, it remains unclear to what extent auditory object processing occurs independently of task demands and consciousness. Studies in animal models have shown that environmental sound discrimination at a neural level persists even in anesthetized preparations, whereas data from anesthetized humans has thus far provided null results. Here, we studied comatose patients as a model of environmental sound discrimination capacities during unconsciousness. We included 19 comatose patients treated with therapeutic hypothermia (TH) during the first 2 days of coma, while recording nineteen-channel electroencephalography (EEG). At the level of each individual patient, we applied a decoding algorithm to quantify the differential EEG responses to human vs. animal vocalizations as well as to sounds of living vocalizations vs. man-made objects. Discrimination between vocalization types was accurate in 11 patients and discrimination between sounds from living and man-made sources in 10 patients. At the group level, the results were significant only for the comparison between vocalization types. These results lay the groundwork for disentangling truly preferential activations in response to auditory categories, and the contribution of awareness to auditory category discrimination.


Journal of Neuroscience Methods | 2016

A linear model for event-related respiration responses

Dominik R. Bach; Samuel Gerster; Athina Tzovara; Giuseppe Castegnetti

Highlights • We develop a novel method for analysing event-related respiratory responses.• This method is based on a Psychophysiological Model (PsPM) of interpolated time series.• We analyse respiration period (RP), amplitude (RA) and flow rate (RFR).• RA and RFR estimates distinguish different event types, and all three measures distinguish events from non-events.• The new method could be useful for fMRI experiments using respiration belts.


Psychophysiology | 2017

Modeling startle eyeblink electromyogram to assess fear learning

Saurabh Khemka; Athina Tzovara; Samuel Gerster; Boris B. Quednow; Dominik R. Bach

Abstract Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear‐potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model‐based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear‐conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS‐, i.e., has high predictive validity). Importantly, our model‐based approach captures fear‐potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM‐based approach to assessment of fear‐potentiated startle, and qualify previous peak‐scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response.


Psychophysiology | 2017

A pupil size response model to assess fear learning.

Christoph W. Korn; Matthias Staib; Athina Tzovara; Giuseppe Castegnetti; Dominik R. Bach

Abstract During fear conditioning, pupil size responses dissociate between conditioned stimuli that are contingently paired (CS+) with an aversive unconditioned stimulus, and those that are unpaired (CS‐). Current approaches to assess fear learning from pupil responses rely on ad hoc specifications. Here, we sought to develop a psychophysiological model (PsPM) in which pupil responses are characterized by response functions within the framework of a linear time‐invariant system. This PsPM can be written as a general linear model, which is inverted to yield amplitude estimates of the eliciting process in the central nervous system. We first characterized fear‐conditioned pupil size responses based on an experiment with auditory CS. PsPM‐based parameter estimates distinguished CS+/CS‐ better than, or on par with, two commonly used methods (peak scoring, area under the curve). We validated this PsPM in four independent experiments with auditory, visual, and somatosensory CS, as well as short (3.5 s) and medium (6 s) CS/US intervals. Overall, the new PsPM provided equal or decisively better differentiation of CS+/CS‐ than the two alternative methods and was never decisively worse. We further compared pupil responses with concurrently measured skin conductance and heart period responses. Finally, we used our previously developed luminance‐related pupil responses to infer the timing of the likely neural input into the pupillary system. Overall, we establish a new PsPM to assess fear conditioning based on pupil responses. The model has a potential to provide higher statistical sensitivity, can be applied to other conditioning paradigms in humans, and may be easily extended to nonhuman mammals.

Collaboration


Dive into the Athina Tzovara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Oddo

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge