Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marzia De Lucia is active.

Publication


Featured researches published by Marzia De Lucia.


NeuroImage | 2008

Use of anisotropic modelling in Electrical Impedance Tomography; description of method and preliminary assessment of utility in imaging brain function in the adult human head

Juan-Felipe P J Abascal; Simon R. Arridge; David Atkinson; Raya Horesh; Lorenzo Fabrizi; Marzia De Lucia; Lior Horesh; Richard Bayford; David S. Holder

Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in numerical models used for image reconstruction is likely to improve EIT image quality.


The Journal of Neuroscience | 2010

A Temporal Hierarchy for Conspecific Vocalization Discrimination in Humans

Marzia De Lucia; Stephanie Clarke; Micah M. Murray

The ability to discriminate conspecific vocalizations is observed across species and early during development. However, its neurophysiologic mechanism remains controversial, particularly regarding whether it involves specialized processes with dedicated neural machinery. We identified spatiotemporal brain mechanisms for conspecific vocalization discrimination in humans by applying electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to acoustically and psychophysically controlled nonverbal human and animal vocalizations as well as sounds of man-made objects. AEP strength modulations in the absence of topographic modulations are suggestive of statistically indistinguishable brain networks. First, responses were significantly stronger, but topographically indistinguishable to human versus animal vocalizations starting at 169–219 ms after stimulus onset and within regions of the right superior temporal sulcus and superior temporal gyrus. This effect correlated with another AEP strength modulation occurring at 291–357 ms that was localized within the left inferior prefrontal and precentral gyri. Temporally segregated and spatially distributed stages of vocalization discrimination are thus functionally coupled and demonstrate how conventional views of functional specialization must incorporate network dynamics. Second, vocalization discrimination is not subject to facilitated processing in time, but instead lags more general categorization by ∼100 ms, indicative of hierarchical processing during object discrimination. Third, although differences between human and animal vocalizations persisted when analyses were performed at a single-object level or extended to include additional (man-made) sound categories, at no latency were responses to human vocalizations stronger than those to all other categories. Vocalization discrimination transpires at times synchronous with that of face discrimination but is not functionally specialized.


Developmental Neuropsychology | 2012

A Tutorial Review of Electrical Neuroimaging From Group-Average to Single-Trial Event-Related Potentials

Athina Tzovara; Micah M. Murray; Christoph M. Michel; Marzia De Lucia

This tutorial review details some of the recent advances in signal analyses applied to event-related potential (ERP) data. These “electrical neuroimaging” analyses provide reference-independent measurements of response strength and response topography that circumvent statistical and interpretational caveats of canonical ERP analysis methods while also taking advantage of the greater information provided by high-density electrode montages. Electrical neuroimaging can be applied across scales ranging from group-averaged ERPs to single-subject and single-trial datasets. We illustrate these methods with a tutorial dataset and place particular emphasis on their suitability for studies of clinical and/or developmental populations.


Pattern Recognition | 2012

Decoding stimulus-related information from single-trial EEG responses based on voltage topographies

Athina Tzovara; Micah M. Murray; Gijs Plomp; Michael H. Herzog; Christoph M. Michel; Marzia De Lucia

Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis a vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subjects behavior and cognitive states, and the discrimination between healthy and clinical populations.


NeuroImage | 2009

The role of actions in auditory object discrimination

Marzia De Lucia; Christian Camen; Stephanie Clarke; Micah M. Murray

Action representations can interact with object recognition processes. For example, so-called mirror neurons respond both when performing an action and when seeing or hearing such actions. Investigations of auditory object processing have largely focused on categorical discrimination, which begins within the initial 100 ms post-stimulus onset and subsequently engages distinct cortical networks. Whether action representations themselves contribute to auditory object recognition and the precise kinds of actions recruiting the auditory-visual mirror neuron system remain poorly understood. We applied electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to sounds of man-made objects that were further subdivided between sounds conveying a socio-functional context and typically cuing a responsive action by the listener (e.g. a ringing telephone) and those that are not linked to such a context and do not typically elicit responsive actions (e.g. notes on a piano). This distinction was validated psychophysically by a separate cohort of listeners. Beginning approximately 300 ms, responses to such context-related sounds significantly differed from context-free sounds both in the strength and topography of the electric field. This latency is >200 ms subsequent to general categorical discrimination. Additionally, such topographic differences indicate that sounds of different action sub-types engage distinct configurations of intracranial generators. Statistical analysis of source estimations identified differential activity within premotor and inferior (pre)frontal regions (Brodmanns areas (BA) 6, BA8, and BA45/46/47) in response to sounds of actions typically cuing a responsive action. We discuss our results in terms of a spatio-temporal model of auditory object processing and the interplay between semantic and action representations.


NeuroImage | 2012

The timing of exploratory decision-making revealed by single-trial topographic EEGanalyses.

Athina Tzovara; Micah M. Murray; Nicolas Bourdaud; Ricardo Chavarriaga; José del R. Millán; Marzia De Lucia

Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operators Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.


NeuroImage | 2012

Auditory perceptual decision-making based on semantic categorization of environmental sounds.

Marzia De Lucia; Athina Tzovara; Fosco Bernasconi; Lucas Spierer; Micah M. Murray

Discriminating complex sounds relies on multiple stages of differential brain activity. The specific roles of these stages and their links to perception were the focus of the present study. We presented 250 ms duration sounds of living and man-made objects while recording 160-channel electroencephalography (EEG). Subjects categorized each sound as that of a living, man-made or unknown item. We tested whether/when the brain discriminates between sound categories even when not transpiring behaviorally. We applied a single-trial classifier that identified voltage topographies and latencies at which brain responses are most discriminative. For sounds that the subjects could not categorize, we could successfully decode the semantic category based on differences in voltage topographies during the 116-174 ms post-stimulus period. Sounds that were correctly categorized as that of a living or man-made item by the same subjects exhibited two periods of differences in voltage topographies at the single-trial level. Subjects exhibited differential activity before the sound ended (starting at 112 ms) and on a separate period at ~270 ms post-stimulus onset. Because each of these periods could be used to reliably decode semantic categories, we interpreted the first as being related to an implicit tuning for sound representations and the second as being linked to perceptual decision-making processes. Collectively, our results show that the brain discriminates environmental sounds during early stages and independently of behavioral proficiency and that explicit sound categorization requires a subsequent processing stage.


Hearing Research | 2011

Learning-induced plasticity in human audition: objects, time, and space.

Lucas Spierer; Marzia De Lucia; Fosco Bernasconi; Jeremy Grivel; Nathalie M.-P. Bourquin; Stephanie Clarke; Micah M. Murray

The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ~300 ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.


Annals of Neurology | 2016

Prediction of awakening from hypothermic post anoxic coma based on auditory discrimination.

Athina Tzovara; Andrea O. Rossetti; Elsa Juan; Tamarah Suys; Dragana Viceic; Marco Rusca; Mauro Oddo; Marzia De Lucia

Most of the available clinical tests for prognosis of postanoxic coma are informative of poor outcome. Previous work has shown that an improvement in auditory discrimination over the first days of coma is predictive of awakening. Here, we aimed at evaluating this test on a large cohort of patients undergoing therapeutic hypothermia and at investigating its added value on existing clinical measures.


PLOS ONE | 2011

Decoding sequence learning from single-trial intracranial EEG in humans.

Marzia De Lucia; Irina Oana Constantinescu; Virginie Sterpenich; Gilles Pourtois; Margitta Seeck; Sophie Schwartz

We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

Collaboration


Dive into the Marzia De Lucia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Oddo

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elsa Juan

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge