Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atish Kamble is active.

Publication


Featured researches published by Atish Kamble.


Science | 2011

An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy

Andrew J. Levan; Nial R. Tanvir; S. B. Cenko; Daniel A. Perley; K. Wiersema; J. S. Bloom; Andrew S. Fruchter; A. de Ugarte Postigo; P. T. O’Brien; N. Butler; A. J. van der Horst; G. Leloudas; Adam N. Morgan; Kuntal Misra; Geoffrey C. Bower; J. Farihi; R. L. Tunnicliffe; Maryam Modjaz; Jeffrey M. Silverman; J. Hjorth; C. C. Thöne; A. Cucchiara; J. M. Castro Cerón; A. J. Castro-Tirado; J. A. Arnold; M. Bremer; Jean P. Brodie; Thomas L. Carroll; Michael C. Cooper; P. A. Curran

A recent bright emission observed by the Swift satellite is due to the sudden accretion of a star onto a massive black hole. Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray–selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.


Nature | 2008

Broadband observations of the naked-eye gamma-ray burst GRB 080319B

Judith Lea Racusin; S. V. Karpov; Marcin Sokolowski; Jonathan Granot; Xue-Feng Wu; V. Pal’shin; S. Covino; A. J. van der Horst; S. R. Oates; Patricia Schady; R. J. E. Smith; J. R. Cummings; Rhaana L. C. Starling; Lech Wiktor Piotrowski; Bin-Bin Zhang; P. A. Evans; S. T. Holland; K. Malek; M. T. Page; L. Vetere; R. Margutti; C. Guidorzi; Atish Kamble; P. A. Curran; A. P. Beardmore; C. Kouveliotou; Lech Mankiewicz; Andrea Melandri; P. T. O’Brien; Kim L. Page

Long-duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.


Scopus | 2011

Discovery of the nearby long, soft GRB100316D with an associated supernova

Randall C. Starling; K. Wiersema; A. Rowlinson; Nial R. Tanvir; Paul T. O'Brien; Kim L. Page; J. P. Osborne; P. A. Evans; C. P. Hurkett; Andrew J. Levan; T. Sakamoto; S. T. Holland; N. Gehrels; M. Stamatikos; D. F. Bersier; Z. Cano; Paolo Goldoni; S. R. Oates; P. A. Curran; M. De Pasquale; N. P. M. Kuin; Sergio Campana; S. Covino; Paolo D'Avanzo; C. C. Thöne; Jesper Sollerman; Daniele Malesani; J. P. U. Fynbo; J. Hjorth; S. D. Vergani

We report the Swift discovery of the nearby long, soft gamma-ray burst GRB 100316D, and the subsequent unveiling of its low-redshift host galaxy and associated supernova. We derive the redshift of the event to be z = 0.0591 +/- 0.0001 and provide accurate astrometry for the gamma-ray burst (GRB) supernova (SN). We study the extremely unusual prompt emission with time-resolved gamma-ray to X-ray spectroscopy and find that the spectrum is best modelled with a thermal component in addition to a synchrotron emission component with a low peak energy. The X-ray light curve has a remarkably shallow decay out to at least 800 s. The host is a bright, blue galaxy with a highly disturbed morphology and we use Gemini-South, Very Large Telescope and Hubble Space Telescope observations to measure some of the basic host galaxy properties. We compare and contrast the X-ray emission and host galaxy of GRB 100316D to a subsample of GRB-SNe. GRB 100316D is unlike the majority of GRB-SNe in its X-ray evolution, but resembles rather GRB 060218, and we find that these two events have remarkably similar high energy prompt emission properties. Comparison of the host galaxies of GRB-SNe demonstrates, however, that there is a great diversity in the environments in which GRB-SNe can be found. GRB 100316D is an important addition to the currently sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.


The Astrophysical Journal | 2013

A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE

R. Margutti; D. Milisavljevic; Alicia M. Soderberg; Ryan Chornock; B. A. Zauderer; Kohta Murase; C. Guidorzi; Nathan Edward Sanders; Paul Kuin; Claes Fransson; Emily M. Levesque; P. Chandra; Edo Berger; Federica B. Bianco; Peter J. Brown; P. Challis; Emmanouil Chatzopoulos; C. C. Cheung; Changsu Choi; Laura Chomiuk; N. N. Chugai; Carlos Contreras; Maria Rebecca Drout; Robert A. Fesen; Ryan J. Foley; William. Fong; Andrew S. Friedman; Christa Gall; N. Gehrels; J. Hjorth

The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E similar to 1050 erg for an ejecta mass similar to 0.5 M-circle dot) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at similar to 5 x 10(14) cm with M similar to 0.1 M-circle dot, ejected by the precursor outburst similar to 40 days before the major explosion. We interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.


The Astrophysical Journal | 2012

Early Radio and X-Ray Observations of the Youngest nearby Type Ia Supernova PTF 11kly (SN 2011fe)

Assaf Horesh; S. R. Kulkarni; Derek B. Fox; John M. Carpenter; Mansi M. Kasliwal; Eran O. Ofek; Robert Michael Quimby; Avishay Gal-Yam; Bradley Cenko; de Antonius Bruyn; Atish Kamble; R. A. M. J. Wijers; Alexander Jonathan Van Der Horst; C. Kouveliotou; Philipp Podsiadlowski; Mark Sullivan; K. Maguire; D. Andrew Howell; Peter E. Nugent; Neil Gehrels; Nicholas M. Law; Dovi Poznanski; Michael M. Shara

On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time.We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of Ṁ ≾ 10^(−8)(w/100 km s^(−1))M_☉ yr^(−1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.


The Astrophysical Journal | 2013

The Ultraviolet-Bright, Slowly Declining Transient PS1-11af as a Partial Tidal Disruption Event

Ryan Chornock; Edo Berger; S. Gezari; B. A. Zauderer; Armin Rest; Laura Chomiuk; Atish Kamble; Alicia M. Soderberg; Ian Czekala; Jason A. Dittmann; Maria Rebecca Drout; Ryan J. Foley; William. Fong; M. Huber; Robert P. Kirshner; A. Lawrence; R. Lunnan; G. H. Marion; Gautham S. Narayan; Adam G. Riess; Kathy Roth; Nathan Edward Sanders; D. Scolnic; S. J. Smartt; K. W. Smith; Christopher W. Stubbs; John L. Tonry; W. S. Burgett; K. C. Chambers; H. Flewelling

We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ~0.002 M ☉, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.


The Astrophysical Journal | 2014

NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT

Raffaella Margutti; Jerod T. Parrent; Atish Kamble; Alicia M. Soderberg; Ryan J. Foley; D. Milisavljevic; Maria Rebecca Drout; Robert P. Kirshner

Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN 2014J (d{sub L} = 3.5 Mpc) reveal no X-ray emission down to a luminosity L{sub x} < 7 × 10{sup 36} erg s{sup –1} (0.3-10 keV) at δt ∼ 20 days after the explosion. We interpret this limit in the context of inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be M-dot <10{sup −9} M{sub ⊙} yr{sup −1} (for wind velocity v{sub w} = 100 km s{sup –1}). Alternatively, the SN shock might be expanding into a uniform medium with density n{sub CSM} < 3 cm{sup –3}. These results rule out single-degenerate (SD) systems with steady mass loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be ≤1%. The allowed progenitors are (1) white dwarf-white dwarf progenitors, (2) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t < 300 yr, and (3) stars where the mass loss ceases before the explosion.


The Astrophysical Journal | 2012

THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z ≲ 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES*

M. J. Michałowski; Atish Kamble; J. Hjorth; Daniele Malesani; R. F. Reinfrank; L. Bonavera; J. M. Castro Cerón; E. Ibar; James Dunlop; J. P. U. Fynbo; M. A. Garrett; P. Jakobsson; David L. Kaplan; T. Krühler; Andrew J. Levan; M. Massardi; Sabyasachi Pal; Jesper Sollerman; Nial R. Tanvir; A. J. van der Horst; D. Watson; K. Wiersema

The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z 500 M ☉ yr-1. For the undetected hosts the mean radio flux (<35 μJy 3σ) corresponds to an average SFR < 15 M ☉ yr-1. Moreover, gsim 88% of the z lsim 1 GRB hosts have ultraviolet dust attenuation A UV < 6.7 mag (visual attenuation AV < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A UV of GRB hosts are consistent with those of Lyman break galaxies, Hα emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z lsim 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought.


Scopus | 2011

A tale of two GRB-SNe at a common redshift of z = 0.54

D. F. Bersier; C. Guidorzi; Shiho Kobayashi; Andrea Melandri; Joanne Bibby; Neil R. Clay; Christopher J. Mottram; Carole G. Mundell; Emma E. Small; Roger Smith; Iain A. Steele; R. Margutti; K. M. Svensson; Andrew J. Levan; A. Volvach; K. Wiersema; Paul T. O'Brien; Rhaana L. C. Starling; Nial R. Tanvir; Alexei S. Pozanenko; V. Loznikov; A. J. van der Horst; Guy G. Pooley; Alberto Fernandez-Soto; A. J. Castro-Tirado; J. Gorosabel; A. de Ugarte Postigo; Myungshin Im; Young-Beom Jeon; W-K. Park

We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z= 0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral energy distributions (SEDs) of the OT resemble those of local Type Ic supernovae (SNe). For GRB 090618, the dense sampling of our optical observations has allowed us to detect well-defined bumps in the optical LCs, as well as a change in colour, that are indicative of light coming from a core-collapse SN. The accompanying SNe for both events are individually compared with SN1998bw, a known GRB supernova, and SN1994I, a typical Type Ic supernova without a known GRB counterpart, and in both cases the brightness and temporal evolution more closely resemble SN1998bw. We also exploit our extensive optical and radio data for GRB 090618, as well as the publicly available Swift-XRT data, and discuss the properties of the afterglow at early times. In the context of a simple jet-like model, the afterglow of GRB 090618 is best explained by the presence of a jet-break at t-to > 0.5 d. We then compare the rest-frame, peak V-band absolute magnitudes of all of the GRB and X-Ray Flash (XRF)-associated SNe with a large sample of local Type Ibc SNe, concluding that, when host extinction is considered, the peak magnitudes of the GRB/XRF-SNe cannot be distinguished from the peak magnitudes of non-GRB/XRF SNe. --------------------------------------------------------------------------------


Publications of the Astronomical Society of Australia | 2013

VAST: An ASKAP survey for variables and slow transients

Tara Murphy; Shami Chatterjee; David L. Kaplan; Jay Banyer; M. E. Bell; Hayley E. Bignall; Geoffrey C. Bower; R. A. Cameron; David Coward; James M. Cordes; Steve Croft; James R. Curran; S. G. Djorgovski; Sean A. Farrell; Dale A. Frail; B. M. Gaensler; Duncan K. Galloway; Bruce Gendre; Anne J. Green; Paul Hancock; Simon Johnston; Atish Kamble; Casey J. Law; T. Joseph W. Lazio; Kitty Lo; Jean-Pierre Macquart; N. Rea; Umaa Rebbapragada; Cormac Reynolds; Stuart D. Ryder

The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae, and orphan afterglows of gamma-ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of 5 s and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.

Collaboration


Dive into the Atish Kamble's collaboration.

Top Co-Authors

Avatar

A. J. van der Horst

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kouveliotou

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuntal Misra

Aryabhatta Research Institute of Observational Sciences

View shared research outputs
Top Co-Authors

Avatar

K. Wiersema

University of Leicester

View shared research outputs
Researchain Logo
Decentralizing Knowledge