Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaella Margutti is active.

Publication


Featured researches published by Raffaella Margutti.


Monthly Notices of the Royal Astronomical Society | 2009

Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs

P. A. Evans; A. P. Beardmore; Kim L. Page; J. P. Osborne; Paul T. O'Brien; R. Willingale; Rhaana L. C. Starling; D. N. Burrows; Olivier Godet; L. Vetere; Judith Lea Racusin; Mike R. Goad; K. Wiersema; L. Angelini; Milvia Capalbi; Guido Chincarini; Neil Gehrels; J. A. Kennea; Raffaella Margutti; D. C. Morris; C. J. Mountford; C. Pagani; Matteo Perri; Patrizia Romano; Nial R. Tanvir

We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2-3, we detail the methods which the Swift-XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift-XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4-6, we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.


Nature | 2009

GRB 090423 at a redshift of z ≈ 8.1

R. Salvaterra; M. Della Valle; Sergio Campana; Guido Chincarini; S. Covino; P. D’Avanzo; Alberto Fernandez-Soto; C. Guidorzi; F. Mannucci; Raffaella Margutti; C. C. Thöne; L. A. Antonelli; S. D. Barthelmy; M. De Pasquale; V. D’Elia; F. Fiore; Dino Fugazza; L. K. Hunt; E. Maiorano; S. Marinoni; F. E. Marshall; Emilio Molinari; John A. Nousek; E. Pian; Judith Lea Racusin; L. Stella; L. Amati; G. Andreuzzi; G. Cusumano; E. E. Fenimore

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = . This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.


Nature | 2013

Slowly fading super-luminous supernovae that are not pair-instability explosions

M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; M. McCrum; R. Kotak; M. Fraser; D. Wright; Ting-Wan Chen; K. W. Smith; D. R. Young; S. A. Sim; S. Valenti; D. A. Howell; Fabio Bresolin; R.-P. Kudritzki; John L. Tonry; M. Huber; Armin Rest; Andrea Pastorello; L. Tomasella; Enrico Cappellaro; Stefano Benetti; Seppo Mattila; E. Kankare; T. Kangas; G. Leloudas; Jesper Sollerman; F. Taddia; Edo Berger

Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1–4. Some evolve slowly, resembling models of ‘pair-instability’ supernovae. Such models involve stars with original masses 140–260 times that of the Sun that now have carbon–oxygen cores of 65–130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron–positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10–16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10−6 times that of the core-collapse rate.


Science | 2008

The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae

Paolo A. Mazzali; S. Valenti; Massimo Della Valle; Guido Chincarini; Daniel N. Sauer; Stefano Benetti; E. Pian; Tsvi Piran; Valerio D'Elia; N. Elias-Rosa; Raffaella Margutti; F. Pasotti; L. Angelo Antonelli; F. Bufano; Sergio Campana; E. Cappellaro; S. Covino; Paolo D'Avanzo; F. Fiore; Dino Fugazza; Roberto Gilmozzi; Deborah Hunter; K. Maguire; E. Maiorano; Paola Marziani; Nicola Masetti; Felix I. Mirabel; H. Navasardyan; K. Nomoto; Eliana Palazzi

The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E ≈ 6×1051 erg) and ejected mass [∼7 times the mass of the Sun (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(M_{{\odot}}\) \end{document})] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a ∼30 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(M_{{\odot}}\) \end{document} star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.


The Astrophysical Journal | 2012

EVLA Observations Constrain the Environment and Progenitor System of Type Ia Supernova 2011fe

Laura Chomiuk; Alicia M. Soderberg; Maxwell Moe; Roger A. Chevalier; Michael P. Rupen; Carles Badenes; Raffaella Margutti; Claes Fransson; W. Fong; Jason A. Dittmann

We report unique Expanded Very Large Array observations of SN 2011fe representing the most sensitive radio study of a Type Ia supernova to date. Our data place direct constraints on the density of the surrounding medium at radii ~1015-1016 cm, implying an upper limit on the mass loss rate from the progenitor system of (assuming a wind speed of 100 km s–1) or expansion into a uniform medium with density n CSM 6 cm–3. Drawing from the observed properties of non-conservative mass transfer among accreting white dwarfs, we use these limits on the density of the immediate environs to exclude a phase space of possible progenitor systems for SN 2011fe. We rule out a symbiotic progenitor system and also a system characterized by high accretion rate onto the white dwarf that is expected to give rise to optically thick accretion winds. Assuming that a small fraction, 1%, of the mass accreted is lost from the progenitor system, we also eliminate much of the potential progenitor parameter space for white dwarfs hosting recurrent novae or undergoing stable nuclear burning. Therefore, we rule out much of the parameter space associated with popular single degenerate progenitor models for SN 2011fe, leaving a limited phase space largely inhabited by some double degenerate systems, as well as exotic single degenerates with a sufficient time delay between mass accretion and SN explosion.


The Astrophysical Journal | 2015

A Decade of Short-duration Gamma-ray Burst Broadband Afterglows: Energetics, Circumburst Densities, and jet Opening Angles

Wen-fai Fong; Edo Berger; Raffaella Margutti; B. A. Zauderer

We present a comprehensive catalog and analysis of broad-band afterglow observations for 103 short-duration gamma-ray bursts (GRBs), comprised of all short GRBs from November 2004 to March 2015 with prompt follow-up observations in the X-ray, optical, near-infrared and/or radio bands. These afterglow observations have uncovered 71 X-ray detections, 30 optical/NIR detections, and 4 radio detections. Employing the standard afterglow synchrotron model, we perform joint probability analyses for a subset of 38 short GRBs with well-sampled light curves to infer the burst isotropic-equivalent energies and circumburst densities. For this subset, we find median isotropic-equivalent gamma-ray and kinetic energies of E_gamma,iso~2x10^51 erg, and E_K,iso~(1-3)x10^51 erg, respectively, depending on the values of the model input parameters. We further find that short GRBs occur in low-density environments, with a median density of n~(3-15)x10^-3 cm^-3, and that ~80-95% of bursts have densities of less than 1 cm^-3. We investigate trends between the circumburst densities and host galaxy properties, and find that events located at large projected offsets of >10 effective radii from their hosts exhibit particularly low densities of n<10^-4 cm^-3, consistent with an IGM-like environment. Using late-time afterglow data for 11 events, we find a median jet opening angle of theta_jet=16+/-10 deg. We also calculate a median beaming factor of f_b~0.04, leading to a beaming-corrected total energy release of E_true~1.6x10^50 erg. Furthermore, we calculate a beaming-corrected event rate of R_true=270 (+1580,-180) Gpc^-3 yr^-1, or ~8 (+47,-5) yr^-1 within a 200 Mpc volume, the Advanced LIGO/Virgo typical detection distance for NS-NS binaries.


The Astrophysical Journal | 2014

Rapidly-Evolving and Luminous Transients from Pan-STARRS1

Maria Rebecca Drout; Ryan Chornock; Alicia M. Soderberg; Nathan Edward Sanders; R. McKinnon; Armin Rest; Ryan J. Foley; D. Milisavljevic; Raffaella Margutti; Edo Berger; Michael L. Calkins; William. Fong; S. Gezari; M. Huber; E. Kankare; Robert P. Kirshner; C. Leibler; R. Lunnan; Seppo Mattila; G. H. Marion; Gautham S. Narayan; A. G. Riess; Kathy Roth; D. Scolnic; S. J. Smartt; John L. Tonry; W. S. Burgett; K. C. Chambers; K. W. Hodapp; Robert Jedicke

In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t 1/2) of less than 12 days and –16.5 > M > –20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g P1 – r P1 lsim –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043 erg s–1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M ☉) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr–1 Gpc–3 (4%-7% of the core-collapse SN rate at z = 0.2).


The Astrophysical Journal | 2017

An Open Catalog for Supernova Data

James Guillochon; Jerod T. Parrent; Raffaella Margutti

We present the Open Supernova Catalog, an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly-searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernovas data being contained within a single JSON file bearing its name. The setup we present here, which is based upon open source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova dataset to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova dataset continues to grow, especially in the upcoming era of all-sky synoptic telescopes which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.


The Astrophysical Journal | 2014

NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT

Raffaella Margutti; Jerod T. Parrent; Atish Kamble; Alicia M. Soderberg; Ryan J. Foley; D. Milisavljevic; Maria Rebecca Drout; Robert P. Kirshner

Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN 2014J (d{sub L} = 3.5 Mpc) reveal no X-ray emission down to a luminosity L{sub x} < 7 × 10{sup 36} erg s{sup –1} (0.3-10 keV) at δt ∼ 20 days after the explosion. We interpret this limit in the context of inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be M-dot <10{sup −9} M{sub ⊙} yr{sup −1} (for wind velocity v{sub w} = 100 km s{sup –1}). Alternatively, the SN shock might be expanding into a uniform medium with density n{sub CSM} < 3 cm{sup –3}. These results rule out single-degenerate (SD) systems with steady mass loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be ≤1%. The allowed progenitors are (1) white dwarf-white dwarf progenitors, (2) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t < 300 yr, and (3) stars where the mass loss ceases before the explosion.


The Astrophysical Journal | 2013

Photospheric Emission as the Dominant Radiation Mechanism in Long-duration Gamma-Ray Bursts

Davide Lazzati; Brian J. Morsony; Raffaella Margutti; Mitchell C. Begelman

We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

Collaboration


Dive into the Raffaella Margutti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Rong Mao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. T. Holland

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge