Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atle M. Bones is active.

Publication


Featured researches published by Atle M. Bones.


Trends in Plant Science | 2012

Phytoalexins in defense against pathogens.

Ishita Ahuja; Ralph Kissen; Atle M. Bones

Plants use an intricate defense system against pests and pathogens, including the production of low molecular mass secondary metabolites with antimicrobial activity, which are synthesized de novo after stress and are collectively known as phytoalexins. In this review, we focus on the biosynthesis and regulation of camalexin, and its role in plant defense. In addition, we detail some of the phytoalexins produced by a range of crop plants from Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae. This includes the very recently identified kauralexins and zealexins produced by maize, and the biosynthesis and regulation of phytoalexins produced by rice. Molecular approaches are helping to unravel some of the mechanisms and reveal the complexity of these bioactive compounds, including phytoalexin action and metabolism.


Plant Physiology | 2013

Transcriptome Responses to Combinations of Stresses in Arabidopsis

Simon Rasmussen; Pankaj Barah; Maria Cristina Suarez-Rodriguez; Simon Bressendorff; Pia Friis; Paolo Costantino; Atle M. Bones; Henrik Bjørn Nielsen; John Mundy

In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure them. Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity have profound effects on crop performance and yields. Thus, delineation of the regulatory networks and metabolic pathways responding to single and multiple concurrent stresses is required for breeding and engineering crop stress tolerance. Many studies have described transcriptome changes in response to single stresses. However, exposure of plants to a combination of stress factors may require agonistic or antagonistic responses or responses potentially unrelated to responses to the corresponding single stresses. To analyze such responses, we initially compared transcriptome changes in 10 Arabidopsis (Arabidopsis thaliana) ecotypes using cold, heat, high-light, salt, and flagellin treatments as single stress factors as well as their double combinations. This revealed that some 61% of the transcriptome changes in response to double stresses were not predic from the responses to single stress treatments. It also showed that plants prioritized between potentially antagonistic responses for only 5% to 10% of the responding transcripts. This indicates that plants have evolved to cope with combinations of stresses and, therefore, may be bred to endure them. In addition, using a subset of this data from the Columbia and Landsberg erecta ecotypes, we have delineated coexpression network modules responding to single and combined stresses.


Phytochemistry | 2011

Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice

Maria Björkman; Ingeborg Klingen; A.N.E. Birch; Atle M. Bones; Toby J. A. Bruce; Tor J. Johansen; Richard Meadow; Jørgen Mølmann; Randi Seljåsen; Lesley E. Smart; Derek Stewart

In this review, we provide an overview of the role of glucosinolates and other phytochemical compounds present in the Brassicaceae in relation to plant protection and human health. Current knowledge of the factors that influence phytochemical content and profile in the Brassicaceae is also summarized and multi-factorial approaches are briefly discussed. Variation in agronomic conditions (plant species, cultivar, developmental stage, plant organ, plant competition, fertilization, pH), season, climatic factors, water availability, light (intensity, quality, duration) and CO(2) are known to significantly affect content and profile of phytochemicals. Phytochemicals such as the glucosinolates and leaf surface waxes play an important role in interactions with pests and pathogens. Factors that affect production of phytochemicals are important when designing plant protection strategies that exploit these compounds to minimize crop damage caused by plant pests and pathogens. Brassicaceous plants are consumed increasingly for possible health benefits, for example, glucosinolate-derived effects on degenerative diseases such as cancer, cardiovascular and neurodegenerative diseases. Thus, factors influencing phytochemical content and profile in the production of brassicaceous plants are worth considering both for plant and human health. Even though it is known that factors that influence phytochemical content and profile may interact, studies of plant compounds were, until recently, restricted by methods allowing only a reductionistic approach. It is now possible to design multi-factorial experiments that simulate their combined effects. This will provide important information to ecologists, plant breeders and agronomists.


Agronomy for Sustainable Development | 2010

Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review

Ishita Ahuja; Jens Rohloff; Atle M. Bones

Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management. Finally, we review brassicas as cover and trap crops, and as biocontrol, biofumigant and biocidal agents against insects and pathogens. Again, we emphasise glucosinolates, their breakdown products, and plant volatile compounds as key components in these processes, which have been considered beneficial in the past and hold great prospects for the future with respect to an integrated pest management.


Phytochemistry Reviews | 2009

The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system

Ralph Kissen; John T. Rossiter; Atle M. Bones

Glucosinolates are plant secondary metabolites that are hydrolysed by the action of myrosinases into various products (isothiocyanates, thiocyanates, epithionitriles, nitriles, oxazolidines). Massive hydrolysis of glucosinolates occurs only upon tissue damage but there is also evidence indicating metabolism of glucosinolates in intact plant tissues. It was originally believed that the glucosinolate–myrosinase system in intact plants was stable due to a spatial separation of the components. This has been coined as the ‘mustard oil bomb’ theory. Proteins that form complexes with myrosinases have been described: myrosinase-binding proteins (MBPs) and myrosinase-associated proteins (MyAPs/ESM). The roles of these proteins and their biological relevance are not yet completely known. Other proteins of the myrosinase enzyme system are the epithiospecifier protein (ESP) and the thiocyanate-forming protein (TFP) that divert the glucosinolate hydrolysis from isothiocyanate production to nitrile/epithionitrile or thiocyanate production. Some glucosinolate hydrolysis products act as plant defence compounds against insects and pathogens or have beneficial health effects on humans. In this review, we survey and critically assess the available information concerning the localization, both at the tissular/cellular and subcellular level, of the different components of the myrosinase enzyme system. Data from the model plant Arabidopsis thaliana is compared to that from other glucosinolate-producing Brassicaceae in order to show common as well as divergent features of the ‘mustard oil bomb’ among these species.


PLOS ONE | 2009

An Integrated Analysis of Molecular Acclimation to High Light in the Marine Diatom Phaeodactylum tricornutum

Marianne Nymark; Kristin Collier Valle; Tore Brembu; Kasper Hancke; Per Winge; Kjersti Andresen; Geir Johnsen; Atle M. Bones

Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investigate the mechanisms of high light acclimation in Phaeodactylum tricornutum using an integrated approach involving global transcriptional profiling, metabolite profiling and variable fluorescence technique. Algae cultures were acclimated to low light (LL), after which the cultures were transferred to high light (HL). Molecular, metabolic and physiological responses were studied at time points 0.5 h, 3 h, 6 h, 12 h, 24 h and 48 h after transfer to HL conditions. The integrated results indicate that the acclimation mechanisms in diatoms can be divided into an initial response phase (0–0.5 h), an intermediate acclimation phase (3–12 h) and a late acclimation phase (12–48 h). The initial phase is recognized by strong and rapid regulation of genes encoding proteins involved in photosynthesis, pigment metabolism and reactive oxygen species (ROS) scavenging systems. A significant increase in light protecting metabolites occur together with the induction of transcriptional processes involved in protection of cellular structures at this early phase. During the following phases, the metabolite profiling display a pronounced decrease in light harvesting pigments, whereas the variable fluorescence measurements show that the photosynthetic capacity increases strongly during the late acclimation phase. We show that P. tricornutum is capable of swift and efficient execution of photoprotective mechanisms, followed by changes in the composition of the photosynthetic machinery that enable the diatoms to utilize the excess energy available in HL. Central molecular players in light protection and acclimation to high irradiance have been identified.


Plant Physiology | 2002

Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis

Harald Husebye; Supachitra Chadchawan; Per Winge; Ole Petter Thangstad; Atle M. Bones

Thioglucoside glucohydrolase 1 (TGG1) is one of two known functional myrosinase enzymes in Arabidopsis. The enzyme catalyzes the hydrolysis of glucosinolates into compounds that are toxic to various microbes and herbivores. Transgenic Arabidopsis plants carrying β-glucuronidase and green fluorescent protein reporter genes fused to 0.5 or 2.5 kb of the TGG1 promoter region were used to study spatial promoter activity. Promoter activity was found to be highly specific and restricted to guard cells and distinct cells of the phloem. No promoter activity was detected in the root or seed. All guard cells show promoter activity. Positive phloem cells are distributed in a discontinuous pattern and occur more frequent in young tissues. Immunocytochemical localization of myrosinase in transverse and longitudinal sections of embedded material show that the TGG1 promoter activity reflects the position of the myrosinase enzyme. In the flower stalk, the myrosinase-containing phloem cells are located between phloem sieve elements and glucosinolate-rich S cells. Our results suggest a cellular separation of myrosinase enzyme and glucosinolate substrate, and that myrosinase is contained in distinct cells. We discuss the potential advantages of locating defense and communication systems to only a few specific cell types.


Plant Molecular Biology | 1997

Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana.

Per Winge; Tore Brembu; Atle M. Bones

The Rho family of GTPases are in higher eukaryotes divided into 3 major subfamilies; the Rho, Rac and Cdc42 proteins. In plants, however, the Rho family is restricted to one large family of Rac-like proteins. From work with mammalian phagocytes the Rac proteins are known to activate a multicomponent NADPH-dependent oxidase which results in accumulation of H2O2, a process termed oxidative burst. In plants a similar oxidative burst is observed and plays an important role in its defence against pathogen infections, suggesting a similar role for the plant Rac-like proteins. The Rho family of GTPases proteins are also involved in control of cell morphology, and are also thought to mediate signals from cell membrane receptors.In a broad search for members of the Ras superfamily in plants, several new small GTP-binding proteins were found. We report here the identification and molecular cloning of 5 rac-like cDNAs from Arabidopsis thaliana, Arac1–5. The Rac-like proteins deduced from the cDNA sequences all share 80–95% homology, but show considerably more diversity on the nucleotide level, indicating that this is an ancient gene family. Four of the rac genes were found to be expressed in all tissues examined, but one gene, Arac2, was expressed exclusively in the root, hypocotyl and stem. Our results show that the rac gene family in A. thaliana consists of at least 10 different genes.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

The cabbage aphid: a walking mustard oil bomb

Eleanna Kazana; Tom W. Pope; Laurienne Tibbles; Matthew Bridges; John A. Pickett; Atle M. Bones; Glen Powell; John T. Rossiter

The cabbage aphid, Brevicoryne brassicae, has developed a chemical defence system that exploits and mimics that of its host plants, involving sequestration of the major plant secondary metabolites (glucosinolates). Like its host plants, the aphid produces a myrosinase (β-thioglucoside glucohydrolase) to catalyse the hydrolysis of glucosinolates, yielding biologically active products. Here, we demonstrate that aphid myrosinase expression in head/thoracic muscle starts during embryonic development and protein levels continue to accumulate after the nymphs are born. However, aphids are entirely dependent on the host plant for the glucosinolate substrate, which they store in the haemolymph. Uptake of a glucosinolate (sinigrin) was investigated when aphids fed on plants or an in vitro system and followed a different developmental pattern in winged and wingless aphid morphs. In nymphs of the wingless aphid morph, glucosinolate level continued to increase throughout the development to the adult stage, but the quantity in nymphs of the winged form peaked before eclosion (at day 7) and subsequently declined. Winged aphids excreted significantly higher amounts of glucosinolate in the honeydew when compared with wingless aphids, suggesting regulated transport across the gut. The higher level of sinigrin in wingless aphids had a significant negative impact on survival of a ladybird predator. Larvae of Adalia bipunctata were unable to survive when fed adult wingless aphids from a 1% sinigrin diet, but survived successfully when fed aphids from a glucosinolate-free diet (wingless or winged), or winged aphids from 1% sinigrin. The apparent lack of an effective chemical defence system in adult winged aphids possibly reflects their energetic investment in flight as an alternative predator avoidance mechanism.


Trends in Plant Science | 2009

Plant peptides in signalling: looking for new partners

Melinka A. Butenko; Ane Kjersti Vie; Tore Brembu; Reidunn B. Aalen; Atle M. Bones

A novel candidate ligand-receptor system, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the related receptor-like kinases (RLKs) HAESA (HAE) and HAESA-LIKE (HSL)2, has been shown to control floral abscission in Arabidopsis thaliana. Furthermore, several IDA-LIKE (IDL) proteins, which contain a conserved C-terminal domain resembling that of the CLAVATA (CLV)3-ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) protein family, have been shown to be partially redundant with IDA. Here, we use the genetic similarities between the IDA and CLV3 signalling systems to hypothesize that closely related peptide ligands are likely to interact with families of closely related RLKs. Guided by this hypothesis and with the aid of genetics and novel methods, ligand-receptor systems can be identified to improve our understanding of developmental processes in plants.

Collaboration


Dive into the Atle M. Bones's collaboration.

Top Co-Authors

Avatar

Per Winge

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tore Brembu

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Rohloff

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ralph Kissen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ishita Ahuja

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Pankaj Barah

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ole Petter Thangstad

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Marianne Nymark

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Olav Vadstein

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge