Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsuhiko Kawamoto is active.

Publication


Featured researches published by Atsuhiko Kawamoto.


Circulation | 2001

Therapeutic Potential of Ex Vivo Expanded Endothelial Progenitor Cells for Myocardial Ischemia

Atsuhiko Kawamoto; Heon-Cheol Gwon; Hideki Iwaguro; Junichi Yamaguchi; Shigeki Uchida; Haruchika Masuda; Marcy Silver; Hong Ma; Marianne Kearney; Jeffrey M. Isner; Takayuki Asahara

Background —We investigated the therapeutic potential of ex vivo expanded endothelial progenitor cells (EPCs) for myocardial neovascularization. Methods and Results —Peripheral blood mononuclear cells obtained from healthy human adults were cultured in EPC medium and harvested 7 days later. Myocardial ischemia was induced by ligating the left anterior descending coronary artery in male Hsd:RH-rnu (athymic nude) rats. A total of 106 EPCs labeled with 1,1′-dioctadecyl-1 to 3,3,3′,3′-tetramethylindocarbocyanine perchlorate were injected intravenously 3 hours after the induction of myocardial ischemia. Seven days later, fluorescence-conjugated Bandeiraea simplicifolia lectin I was administered intravenously, and the rats were immediately killed. Fluorescence microscopy revealed that transplanted EPCs accumulated in the ischemic area and incorporated into foci of myocardial neovascularization. To determine the impact on left ventricular function, 5 rats (EPC group) were injected intravenously with 106 EPCs 3 hours after ischemia; 5 other rats (control group) received culture media. Echocardiography, performed just before and 28 days after ischemia, disclosed ventricular dimensions that were significantly smaller and fractional shortening that was significantly greater in the EPC group than in the control group by day 28. Regional wall motion was better preserved in the EPC group. After euthanization on day 28, necropsy examination disclosed that capillary density was significantly greater in the EPC group than in the control group. Moreover, the extent of left ventricular scarring was significantly less in rats receiving EPCs than in controls. Immunohistochemistry revealed capillaries that were positive for human-specific endothelial cells. Conclusions —Ex vivo expanded EPCs incorporate into foci of myocardial neovascularization and have a favorable impact on the preservation of left ventricular function.


Circulation | 2003

Stromal Cell–Derived Factor-1 Effects on Ex Vivo Expanded Endothelial Progenitor Cell Recruitment for Ischemic Neovascularization

Junichi Yamaguchi; Kengo Kusano; Osamu Masuo; Atsuhiko Kawamoto; Marcy Silver; Satoshi Murasawa; Marta Bosch-Marcé; Haruchika Masuda; Douglas W. Losordo; Jeffrey M. Isner; Takayuki Asahara

Background—Stromal cell–derived factor-1 (SDF-1) is a chemokine considered to play an important role in the trafficking of hematopoietic stem cells. Given the close relationship between hematopoietic stem cells and endothelial progenitor cells (EPCs), we investigated the effect of SDF-1 on EPC-mediated vasculogenesis. Methods and Results—Flow cytometric analysis demonstrated expression of CXCR4, the receptor of SDF-1, by 66±3% of EPCs after 7 days in culture. In vitro modified Boyden chamber assay showed a dose-dependent EPC migration toward SDF-1 (control versus 10 ng/mL SDF-1 versus 100 ng/mL SDF-1, 24±2 versus 71±3 versus 140±6 cells/mm2;P <0.0001). SDF-1 attenuated EPC apoptosis (control versus SDF-1, 27±1 versus 7±1%;P <0.0001). To investigate the effect of SDF-1 in vivo, we locally injected SDF-1 into athymic ischemic hindlimb muscle of nude mice combined with human EPC transplantation to determine whether SDF-1 augmented EPC-induced vasculogenesis. Fluorescence microscopic examination disclosed increased local accumulation of fluorescence-labeled EPCs in ischemic muscle in the SDF-1 treatment group (control versus SDF-1=241±25 versus 445±24 cells/mm2, P <0.0001). At day 28 after treatment, ischemic tissue perfusion was improved in the SDF-1 group and capillary density was also increased. (control versus SDF-1, 355±26 versus 551±30 cells/mm2;P <0.0001). Conclusion—These findings indicate that locally delivered SDF-1 augments vasculogenesis and subsequently contributes to ischemic neovascularization in vivo by augmenting EPC recruitment in ischemic tissues.


Circulation | 2003

Intramyocardial Transplantation of Autologous Endothelial Progenitor Cells for Therapeutic Neovascularization of Myocardial Ischemia

Atsuhiko Kawamoto; Tengis Tkebuchava; Junichi Yamaguchi; Hiromi Nishimura; Young-sup Yoon; Charles E. Milliken; Shigeki Uchida; Osamu Masuo; Hideki Iwaguro; Hong Ma; Allison Hanley; Marcy Silver; Marianne Kearney; Douglas W. Losordo; Jeffrey M. Isner; Takayuki Asahara

Background—We investigated whether catheter-based, intramyocardial transplantation of autologous endothelial progenitor cells can enhance neovascularization in myocardial ischemia. Methods and Results—Myocardial ischemia was induced by placement of an ameroid constrictor around swine left circumflex artery. Four weeks after constrictor placement, CD31+ mononuclear cells (MNCs) were freshly isolated from the peripheral blood of each animal. After overnight incubation of CD31+ MNCs in noncoated plates, nonadhesive cells (NA/CD31+ MNCs) were harvested as the endothelial progenitor cell–enriched fraction. Nonadhesive CD31− cells (NA/CD31− MNCs) were also prepared. Autologous transplantation of 107 NA/CD31+ MNCs, 107 NA/CD31− MNCs, or PBS was performed with a NOGA mapping injection catheter to target ischemic myocardium. In a parallel study, 105 human CD34+ MNCs, 105 human CD34− MNCs, or PBS was transplanted into ischemic myocardium of nude rats 10 minutes after ligation of the left anterior descending coronary artery. In the swine study, ischemic area by NOGA mapping, Rentrop grade angiographic collateral development, and echocardiographic left ventricular ejection fraction improved significantly 4 weeks after transplantation of NA/CD31+ MNCs but not after injection of NA/CD31− MNCs or PBS. Capillary density in ischemic myocardium 4 weeks after transplantation was significantly greater in the NA/CD31+ MNC group than the control groups. In the rat study, echocardiographic left ventricular systolic function and capillary density were significantly better preserved in the CD34+ MNC group than in the control groups 4 weeks after myocardial ischemia. Conclusions—These favorable outcomes encourage future clinical trials of catheter-based, intramyocardial transplantation of autologous CD34+ MNCs in the setting of chronic myocardial ischemia.


Circulation | 2007

Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina : A phase I/IIa double-blind, randomized controlled trial

Douglas W. Losordo; Richard A. Schatz; Christopher J. White; James E. Udelson; Vimal Veereshwarayya; Michelle Durgin; Kian Keong Poh; Robert Weinstein; Marianne Kearney; Muqtada Chaudhry; Aaron Burg; Liz Eaton; Lindsay Heyd; Tina Thorne; Leon Shturman; Peter Hoffmeister; Ken Story; Victor Zak; Douglas Dowling; Jay H. Traverse; Rachel E. Olson; Janice Flanagan; Donata Sodano; Toshinori Murayama; Atsuhiko Kawamoto; Kengo Kusano; Jill Wollins; Frederick G.P. Welt; Pinak B. Shah; Peter Soukas

Background— A growing population of patients with coronary artery disease experiences angina that is not amenable to revascularization and is refractory to medical therapy. Preclinical studies have indicated that human CD34+ stem cells induce neovascularization in ischemic myocardium, which enhances perfusion and function. Methods and Results— Twenty-four patients (19 men and 5 women aged 48 to 84 years) with Canadian Cardiovascular Society class 3 or 4 angina who were undergoing optimal medical treatment and who were not candidates for mechanical revascularization were enrolled in a double-blind, randomized (3:1), placebo-controlled dose-escalating study. Patients received granulocyte colony-stimulating factor 5 &mgr;g · kg−1 · d−1 for 5 days with leukapheresis on the fifth day. Selection of CD34+ cells was performed with a Food and Drug Administration–approved device. Electromechanical mapping was performed to identify ischemic but viable regions of myocardium for injection of cells (versus saline). The total dose of cells was distributed in 10 intramyocardial, transendocardial injections. Patients were required to have an implantable cardioverter-defibrillator or to temporarily wear a LifeVest wearable defibrillator. No incidence was observed of myocardial infarction induced by mobilization or intramyocardial injection. The intramyocardial injection of cells or saline did not result in cardiac enzyme elevation, perforation, or pericardial effusion. No incidence of ventricular tachycardia or ventricular fibrillation occurred during the administration of granulocyte colony-stimulating factor or intramyocardial injections. One patient with a history of sudden cardiac death/ventricular tachycardia/ventricular fibrillation had catheter-induced ventricular tachycardia during mapping that required cardioversion. Serious adverse events were evenly distributed. Efficacy parameters including angina frequency, nitroglycerine usage, exercise time, and Canadian Cardiovascular Society class showed trends that favored CD34+ cell–treated patients versus control subjects given placebo. Conclusions— A randomized trial of intramyocardial injection of autologous CD34+ cells in patients with intractable angina was completed that provides evidence for feasibility, safety, and bioactivity. A larger phase IIb study is currently under way to further evaluate this therapy.


Nature Medicine | 2005

Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling

Kengo Kusano; Roberto Pola; Toshinori Murayama; Cynthia Curry; Atsuhiko Kawamoto; Atsushi Iwakura; Satoshi Shintani; Masaaki; Jun Asai; Tengiz Tkebuchava; Tina Thorne; Hideya Takenaka; Ryuichi Aikawa; David A. Goukassian; Patrick von Samson; Hiromichi Hamada; Young-sup Yoon; Marcy Silver; Elizabeth Eaton; Hong Ma; Lindsay Heyd; Marianne Kearney; William Munger; Jeffery A Porter; Raj Kishore; Douglas W. Losordo

Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow–derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.


Catheterization and Cardiovascular Interventions | 2007

Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies

Atsuhiko Kawamoto; Takayuki Asahara

The field of cell‐based transplantation has expanded considerably and is poised to become an established cardiovascular therapy in the near future. In this review, we will focus on endothelial progenitor cells (EPCs), which are immature cells capable of differentiating into mature endothelial cells. EPCs share many surface marker antigens such as CD34, AC133, Flk‐1, etc. with hematopoietic stem cells (HSCs) and the major source of EPCs as well as HSCs is the bone marrow (BM). BM‐derived EPCs are mobilized into peripheral blood and recruited to the foci of pathophysiological neovascularization and reendothelialization, thereby contributing to vascular regeneration. Severe EPC dysfunction is an indicator of poor prognosis and severe endothelial dysfunction. Indeed, number of circulating EPCs and their migratory activity are reduced in patients with diabetes, coronary artery disease (CAD), or subjects with multiple coronary risk factors. Effective neovascularization induced by EPC transplantation for hindlimb, myocardial, and cerebral ischemia has been demonstrated in many preclinical studies, and early clinical trials of EPC transplantation in chronic and acute CAD indicate safety and feasibility of myocardial cell‐based therapies. For therapeutic reendothelialization in patients undergoing percutaneous coronary intervention, CD34 antibody‐coated stents have been used clinically to capture circulating EPCs at the injury sites and enhance reendothelialization and safety of stents. Further development in cell processing technology for efficient isolation, expansion, mobilization, recruitment, and transplantation of EPCs into target tissues are underway and expected to be tested in clinical trials in the near future.


Circulation | 2004

Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia.

Atsuhiko Kawamoto; Toshinori Murayama; Kengo Kusano; Masaaki; Tengiz Tkebuchava; Satoshi Shintani; Atsushi Iwakura; Ingrid Johnson; Patrick von Samson; Allison Hanley; Mary Gavin; Cindy Curry; Marcy Silver; Hong Ma; Marianne Kearney; Douglas W. Losordo

Background—We performed a series of investigations to test the hypothesis that combining angiogenic gene therapy and cytokine (CK)-induced endothelial progenitor cell mobilization would be superior to either strategy alone for treatment of chronic myocardial ischemia. Methods and Results—A swine model of chronic myocardial ischemia and a murine model of acute myocardial infarction were used in this study. In both models, animals were randomly assigned to 1 of 4 treatment groups: Combo group, intramyocardial vascular endothelial growth factor (VEGF)-2 gene transfer plus subcutaneous injection of CKs; VEGF-2, VEGF-2 gene transfer plus saline subcutaneously injected; CK, empty vector transfer plus CKs; and control, empty vector plus subcutaneous saline. Acute myocardial infarction was also induced in wild-type mice 4 weeks after bone marrow transplantation from enhanced green fluorescent protein transgenic mice to permit observation of bone marrow–derived cells in the myocardium after acute myocardial infarction. In chronic myocardial ischemia, combination therapy resulted in superior improvement in all indexes of perfusion and function compared with all other treatment groups. In the bone marrow transplant mice, double immunofluorescent staining revealed that the combination of CK-induced mobilization and local VEGF-2 gene transfer resulted in a significant increase in the number of bone marrow–derived cells incorporating into the neovasculature, indicating that recruitment and/or retention of bone marrow–derived progenitors was enhanced by mobilization and that local VEGF-2 gene transfer can provide signals for recruitment or incorporation of circulating progenitor cells. Conclusions—Mobilization of endothelial progenitor cells with cytokines potentiates VEGF-2 gene therapy for myocardial ischemia and enhances bone marrow cell incorporation into ischemic myocardium.


Journal of Cellular Physiology | 2008

Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing†

Tomoyuki Matsumoto; Yutaka Mifune; Atsuhiko Kawamoto; Ryosuke Kuroda; Taro Shoji; Hiroto Iwasaki; Takahiro Suzuki; Akira Oyamada; Miki Horii; Ayumi Yokoyama; Hiromi Nishimura; Sang Yang Lee; Masahiko Miwa; Minoru Doita; Masahiro Kurosaka; Takayuki Asahara

We recently reported that systemic administration of peripheral blood (PB) CD34+ cells, an endothelial progenitor cell (EPC)‐enriched population, contributed to fracture healing via vasculogenesis/angiogenesis. However, pathophysiological role of EPCs in fracture healing process has not been fully clarified. Therefore, we investigated the hypothesis whether mobilization and incorporation of bone marrow (BM)‐derived EPCs may play a pivotal role in appropriate fracture healing. Serial examinations of Laser doppler perfusion imaging and histological capillary density revealed that neovascularization activity at the fracture site peaked at day 7 post‐fracture, the early phase of endochondral ossifification. Fluorescence‐activated cell sorting (FACS) analysis demonstrated that the frequency of BM cKit+Sca1+Lineage− (Lin−) cells and PB Sca1+Lin− cells, which are EPC‐enriched fractions, significantly increased post‐fracture. The Sca1+ EPC‐derived vasuculogenesis at the fracture site was confirmed by double immunohistochemistry for CD31 and Sca1. BM transplantation from transgenic donors expressing LacZ transcriptionally regulated by endothelial cell‐specific Tie‐2 promoter into wild type also provided direct evidence that EPCs contributing to enhanced neovascularization at the fracture site were specifically derived from BM. Animal model of systemic administration of PB Sca1+Lin− Green Fluorescent Protein (GFP)+ cells further confirmed incorporation of the mobilized EPCs into the fracture site for fracture healing. These findings indicate that fracture may induce mobilization of EPCs from BM to PB and recruitment of the mobilized EPCs into fracture sites, thereby augment neovascularization during the process of bone healing. EPCs may play an essential role in fracture healing by promoting a favorable environment through neovascularization in damaged skeletal tissue. J. Cell. Physiol. 215: 234–242, 2008.


Cardiovascular Radiation Medicine | 2002

Transplantation of endothelial progenitor cells for therapeutic neovascularization

Atsuhiko Kawamoto; Takayuki Asahara; Douglas W. Losordo

Endothelial progenitor cells (EPCs), which were first identified in adult peripheral blood mononuclear cells (MNCs), play an important role in postnatal neovascularization. Tissue ischemia augments mobilization of EPCs from bone marrow into the circulation and enhances incorporation of EPCs at sites of neovascularization. Two methods to obtain EPCs from bone marrow, peripheral blood or cord blood MNCs have been evaluated for therapeutic neovascularization: (1) fresh isolation using anti-CD34, anti-KDR or anti-AC133 antibody, and (2) ex vivo expansion of total MNCs. In an immunodeficient mouse model of hindlimb ischemia, systemic transplantation of human ex vivo expanded EPCs improves limb survival through the enhancement of blood flow in the ischemic tissue. A similar strategy also leads to histological and functional preservation of ischemic myocardium of nude rats. Recently, a preclinical study of catheter-based, intramyocardial transplantation ofautologous EPCs in a swine model of chronic myocardial ischemia demonstrated the therapeutic potential of cell-based therapy, with attenuation of myocardial ischemia and improvement in left ventricular function. These favorable outcomes strongly suggest a therapeutic impact of EPC transplantation in clinical settings. Further basic research, with improved understanding of the mechanisms governing homing and incorporation of EPCs, will be still necessary to optimize the methodology of the cell therapy.


Trends in Cardiovascular Medicine | 2008

Endothelial progenitor cells for cardiovascular regeneration.

Atsuhiko Kawamoto; Douglas W. Losordo

Endothelial progenitor cells (EPCs) are peripheral blood mononuclear cells that can differentiate into mature endothelial cells. Adult EPCs were first discovered in human peripheral blood in 1997. Since then, the potency of EPCs for cardiovascular regeneration has been demonstrated in several preclinical studies; and investigators are beginning to evaluate the therapeutic utility of EPCs in early-phase clinical trials. This review summarizes the progression of basic, preclinical, and clinical research into the potential use of EPC therapy for cardiovascular regeneration.

Collaboration


Dive into the Atsuhiko Kawamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiromi Nishimura

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge