Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atsuko Kimura.
Embo Molecular Medicine | 2010
Xiaoli Guo; Chikako Harada; Kazuhiko Namekata; Atsushi Matsuzawa; Monsterrat Camps; Hong Ji; Dominique Swinnen; Catherine Jorand-Lebrun; Mathilde Muzerelle; Pierre-Alain Vitte; Thomas Rückle; Atsuko Kimura; Kuniko Kohyama; Yoh Matsumoto; Hidenori Ichijo; Takayuki Harada
Apoptosis signal‐regulating kinase 1 (ASK1) is an evolutionarily conserved mitogen‐activated protein kinase (MAPK) kinase kinase which plays important roles in stress and immune responses. Here, we show that ASK1 deficiency attenuates neuroinflammation in experimental autoimmune encephalomyelitis (EAE), without affecting the proliferation capability of T cells. Moreover, we found that EAE upregulates expression of Toll‐like receptors (TLRs) in activated astrocytes and microglia, and that TLRs can synergize with ASK1‐p38 MAPK signalling in the release of key chemokines from astrocytes. Consequently, oral treatment with a specific small molecular weight inhibitor of ASK1 suppressed EAE‐induced autoimmune inflammation in both spinal cords and optic nerves. These results suggest that the TLR‐ASK1‐p38 pathway in glial cells may serve as a valid therapeutic target for autoimmune demyelinating disorders including multiple sclerosis.
Nature Communications | 2011
Chikako Harada; Xiaoli Guo; Kazuhiko Namekata; Atsuko Kimura; Kazuaki Nakamura; Kohichi Tanaka; Luis F. Parada; Takayuki Harada
Glia, the support cells of the central nervous system, have recently attracted considerable attention both as mediators of neural cell survival and as sources of neural regeneration. To further elucidate the role of glial and neural cells in neurodegeneration, we generated TrkBGFAP and TrkBc-kit knockout mice in which TrkB, a receptor for brain-derived neurotrophic factor (BDNF), is deleted in retinal glia or inner retinal neurons, respectively. Here, we show that the extent of glutamate-induced retinal degeneration was similar in these two mutant mice. Furthermore in TrkBGFAP knockout mice, BDNF did not prevent photoreceptor degeneration and failed to stimulate Müller glial cell proliferation and expression of neural markers in the degenerating retina. These results demonstrate that BDNF signalling in glia has important roles in neural protection and regeneration, particularly in conversion of Müller glia to photoreceptors. In addition, our genetic models provide a system in which glia- and neuron-specific gene functions can be tested in central nervous system tissues in vivo.
The Journal of Neuroscience | 2012
Kazuhiko Namekata; Chikako Harada; Xiaoli Guo; Atsuko Kimura; Daiji Kittaka; Hayaki Watanabe; Takayuki Harada
Dock3, a new member of the guanine nucleotide exchange factors, causes cellular morphological changes by activating the small GTPase Rac1. Overexpression of Dock3 in neural cells promotes axonal outgrowth downstream of brain-derived neurotrophic factor (BDNF) signaling. We previously showed that Dock3 forms a complex with Fyn and WASP (Wiskott–Aldrich syndrome protein) family verprolin-homologous (WAVE) proteins at the plasma membrane, and subsequent Rac1 activation promotes actin polymerization. Here we show that Dock3 binds to and inactivates glycogen synthase kinase-3β (GSK-3β) at the plasma membrane, thereby increasing the nonphosphorylated active form of collapsin response mediator protein-2 (CRMP-2), which promotes axon branching and microtubule assembly. Exogenously applied BDNF induced the phosphorylation of GSK-3β and dephosphorylation of CRMP-2 in hippocampal neurons. Moreover, increased phosphorylation of GSK-3β was detected in the regenerating axons of transgenic mice overexpressing Dock3 after optic nerve injury. These results suggest that Dock3 plays important roles downstream of BDNF signaling in the CNS, where it regulates cell polarity and promotes axonal outgrowth by stimulating dual pathways: actin polymerization and microtubule assembly.
Cell Death & Differentiation | 2013
Takashi Katome; Kazuhiko Namekata; Xiaoli Guo; Kentaro Semba; Daiji Kittaka; Kazuto Kawamura; Atsuko Kimura; Chikako Harada; Hidenori Ichijo; Yoshinori Mitamura; Takayuki Harada
Optic nerve injury (ONI) induces retinal ganglion cell (RGC) death and optic nerve atrophy that lead to visual loss. Apoptosis signal-regulating kinase 1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase (MAPK) kinase kinase and has an important role in stress-induced RGC apoptosis. In this study, we found that ONI-induced p38 activation and RGC loss were suppressed in ASK1-deficient mice. Sequential in vivo retinal imaging revealed that post-ONI treatment with a p38 inhibitor into the eyeball was effective for RGC protection. ONI-induced monocyte chemotactic protein-1 production in RGCs and microglial accumulation around RGCs were suppressed in ASK1-deficient mice. In addition, the productions of tumor necrosis factor and inducible nitric oxide synthase in microglia were decreased when the ASK1-p38 pathway was blocked. These results suggest that ASK1 activation in both neural and glial cells is involved in neural cell death, and that pharmacological interruption of ASK1-p38 pathways could be beneficial in the treatment of ONI.
Cell Death & Differentiation | 2013
Kazuhiko Namekata; Atsuko Kimura; Kazuto Kawamura; Xiaoli Guo; Chikako Harada; Kohichi Tanaka; Takayuki Harada
Dedicator of cytokinesis 3 (Dock3), a new member of the guanine nucleotide exchange factors for the small GTPase Rac1, promotes axon regeneration following optic nerve injury. In the present study, we found that Dock3 directly binds to the intracellular C-terminus domain of NR2B, an N-methyl-D-aspartate (NMDA) receptor subunit. In transgenic mice overexpressing Dock3 (Dock3 Tg), NR2B expression in the retina was significantly decreased and NMDA-induced retinal degeneration was ameliorated. In addition, overexpression of Dock3 protected retinal ganglion cells (RGCs) from oxidative stress. We previously reported that glutamate/aspartate transporter (GLAST) is a major glutamate transporter in the retina, and RGC degeneration due to glutamate neurotoxicity and oxidative stress is observed in GLAST-deficient (KO) mice. In GLAST KO mice, the NR2B phosphorylation rate in the retina was significantly higher compared with Dock3 Tg:GLAST KO mice. Consistently, glaucomatous retinal degeneration was significantly improved in GLAST KO:Dock3 Tg mice compared with GLAST KO mice. These results suggest that Dock3 overexpression prevents glaucomatous retinal degeneration by suppressing both NR2B-mediated glutamate neurotoxicity and oxidative stress, and identifies Dock3 signaling as a potential therapeutic target for both neuroprotection and axonal regeneration.
Neuroscience Letters | 1990
Atsuko Kimura; Akio Sato; Yukio Takano
The effect of focal electrical stimulation of the nucleus basalis of Meynert (NBM) on the regional cerebral metabolic rate for glucose (rCMRglc) was examined in halothane-anesthetized rats using the quantitative [14C]2-deoxy-D-glucose method. The stimulation of the unilateral NBM (with parameters of 200 microA, 0.5 ms, 50 Hz for 45 min) did not influence rCMRglc in any brain regions except for the stimulated NBM itself. In cerebral cortex ipsilateral to the NBM stimulated, the regional cerebral blood flow (rCBF) was increased by the NBM stimulation through the stimulated period, while rCMRglc was not increased. These results suggest that the increase in rCBF in the cortex following focal electrical stimulation of the NBM is not a consequence of an increase in rCMRglc in the cerebral cortex.
International Journal of Molecular Sciences | 2016
Atsuko Kimura; Kazuhiko Namekata; Xiaoli Guo; Chikako Harada; Takayuki Harada
Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration.
Cell Death and Disease | 2014
Kentaro Semba; Kazuhiko Namekata; Atsuko Kimura; Chikako Harada; Yoshinori Mitamura; Takayuki Harada
Glaucoma is one of the leading causes of irreversible blindness that is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs, and the loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP). Brimonidine (BMD) is an α2-adrenergic receptor agonist and it is commonly used in a form of eye drops to lower IOP in glaucoma patients. Recent studies have suggested that BMD has direct protective effects on RGCs involving IOP-independent mechanisms, but it is still controversial. In the present study, we examined the effects of BMD in EAAC1-deficient (KO) mice, an animal model of normal tension glaucoma. BMD caused a small decrease in IOP, but sequential in vivo retinal imaging and electrophysiological analysis revealed that treatment with BMD was highly effective for RGC protection in EAAC1 KO mice. BMD suppressed the phosphorylation of the N-methyl-D-aspartate receptor 2B (NR2B) subunit in RGCs in EAAC1 KO mice. Furthermore, in cultured Müller glia, BMD stimulated the production of several neurotrophic factors that enhance RGC survival. These results suggest that, in addition to lowering IOP, BMD prevents glaucomatous retinal degeneration by stimulating multiple pathways including glia–neuron interactions.
Neuroscience Letters | 2015
Atsuko Kimura; Xiaoli Guo; Takahiko Noro; Chikako Harada; Kohichi Tanaka; Kazuhiko Namekata; Takayuki Harada
Valproic acid (VPA) is widely used for treatment of epilepsy, mood disorders, migraines and neuropathic pain. It exerts its therapeutic benefits through modulation of multiple mechanisms including regulation of gamma-aminobutyric acid and glutamate neurotransmissions, activation of pro-survival protein kinases and inhibition of histone deacetylase. The evidence for neuroprotective properties associated with VPA is emerging. Herein, we investigated the therapeutic potential of VPA in a mouse model of normal tension glaucoma (NTG). Mice with glutamate/aspartate transporter gene deletion (GLAST KO mice) demonstrate progressive retinal ganglion cell (RGC) loss and optic nerve degeneration without elevated intraocular pressure, and exhibit glaucomatous pathology including glutamate neurotoxicity and oxidative stress in the retina. VPA (300mg/kg) or vehicle (PBS) was administered via intraperitoneal injection in GLAST KO mice daily for 2 weeks from the age of 3 weeks, which coincides with the onset of glaucomatous retinal degeneration. Following completion of the treatment period, the vehicle-treated GLAST KO mouse retina showed significant RGC death. Meanwhile, VPA treatment prevented RGC death and thinning of the inner retinal layer in GLAST KO mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment observed in vehicle-treated GLAST KO mice was ameliorated with VPA treatment, clearly establishing that VPA beneficially affects both histological and functional aspects of the glaucomatous retina. We found that VPA reduces oxidative stress induced in the GLAST KO retina and stimulates the cell survival signalling pathway associated with extracellular-signal-regulated kinases (ERK). This is the first study to report the neuroprotective effects of VPA in an animal model of NTG. Our findings raise intriguing possibilities that the widely prescribed drug VPA may be a novel candidate for treatment of glaucoma.
Cell Death and Disease | 2015
Takahiko Noro; Kazuhiko Namekata; Atsuko Kimura; Xin Guo; Yuriko Azuchi; Chikako Harada; Tadashi Nakano; Hiroshi Tsuneoka; Takayuki Harada
Spermidine acts as an endogenous free radical scavenger and inhibits the action of reactive oxygen species. In this study, we examined the effects of spermidine on retinal ganglion cell (RGC) death in a mouse model of optic nerve injury (ONI). Daily ingestion of spermidine reduced RGC death following ONI and sequential in vivo retinal imaging revealed that spermidine effectively prevented retinal degeneration. Apoptosis signal-regulating kinase-1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase kinase kinase and has an important role in ONI-induced RGC apoptosis. We demonstrated that spermidine suppresses ONI-induced activation of the ASK1-p38 mitogen-activated protein kinase pathway. Moreover, production of chemokines important for microglia recruitment was decreased with spermidine treatment and, consequently, accumulation of retinal microglia is reduced. In addition, the ONI-induced expression of inducible nitric oxide synthase in the retina was inhibited with spermidine treatment, particularly in microglia. Furthermore, daily spermidine intake enhanced optic nerve regeneration in vivo. Our findings indicate that spermidine stimulates neuroprotection as well as neuroregeneration, and may be useful for treatment of various neurodegenerative diseases including glaucoma.